

REVIEW ARTICLE

Atraumatic restorative treatment in pediatric dentistry: assessing its effectiveness in caries removal in schoolchildren

Karen Stephanie Peñarreta-Tutillo¹ **Edison Xavier Flores-Portugal¹** **Carmen Salinas-Goodier¹**

¹Autonomous Regional University of the Andes. Ambato, Ecuador.

Received: December 27, 2025

Accepted: December 28, 2025

Published: December 31, 2025

Citar como: Peñarreta-Tutillo KS, Flores-Portugal EX, Salinas-Goodier C. Tratamiento restaurativo atraumático en odontopediatría: evaluación de su efectividad en la remoción de caries en escolares. Rev Ciencias Médicas [Internet]. 2025 [citado: fecha de acceso]; 29(S2): e7029. Disponible en: <http://revcmpinar.sld.cu/index.php/publicaciones/article/view/7029>

ABSTRACT

Introduction: childhood caries is a multifactorial disease that affects oral health and generates anxiety regarding conventional dental treatments.

Objective: to evaluate the effectiveness of atraumatic restorative treatment (ART) in caries removal in schoolchildren, analyzing restoration survival rates and clinical benefits.

Methods: a systematic review of the scientific literature was conducted across multiple databases. The search employed an algorithm combining keywords and Boolean operators to identify relevant sources. Selected studies, after applying inclusion and exclusion criteria, were critically analyzed considering recency, methodological quality, and thematic relevance, and integrated into the final synthesis of the review.

Development: studies show that ART—based on hand instruments and materials such as glass ionomer cement—presents restoration survival rates between 47 % and 90 %. Compared to conventional techniques, its efficacy is slightly lower, although it offers advantages such as shorter application time, reduced anxiety, and greater acceptance among pediatric patients. Effectiveness increases when combined with silver diamine fluoride or Hall technique. Limitations include variability in outcomes based on materials, operator skill, and dentition type.

Conclusions: ART is an effective and well-accepted alternative in pediatric dentistry, especially in resource-limited settings. Although its success rate is lower than conventional methods, it provides psychological and practical benefits for children. Comparative and longitudinal research is recommended to optimize its application and ensure sustained outcomes.

Keywords: Dental Caries; Child; Pediatric Dentistry; Dental Atraumatic Restorative Treatment.

INTRODUCTION

According to the Pan American Health Organization (PAHO), prevention and appropriate management of oral diseases such as childhood caries are essential components of primary healthcare.⁽¹⁾ Dental caries affects approximately 70 % of children worldwide, and the problem is exacerbated in Latin America, where socioeconomic and cultural barriers make access to oral health services difficult and highly inequitable.⁽²⁾

Caries is the damage that can occur to a tooth when oral bacteria interact with sugars and starches from food and beverages, producing acid that attacks tooth enamel and causes demineralization. It is multifactorial and closely linked to lifestyle, inadequate basic nutrition and oral hygiene, nighttime infant feeding, high sugar consumption, early bacterial colonization, and low socioeconomic status.⁽³⁾

This dental condition is a multifactorial infectious disease that can begin during tooth eruption in early childhood and is recognized to affect general health and quality of life.^(4,5,6) Caries removal is a critical procedure; if not performed timely or adequately, it can compromise oral health and the function of the stomatognathic system, negatively impacting the child's and family's quality of life.⁽⁷⁾

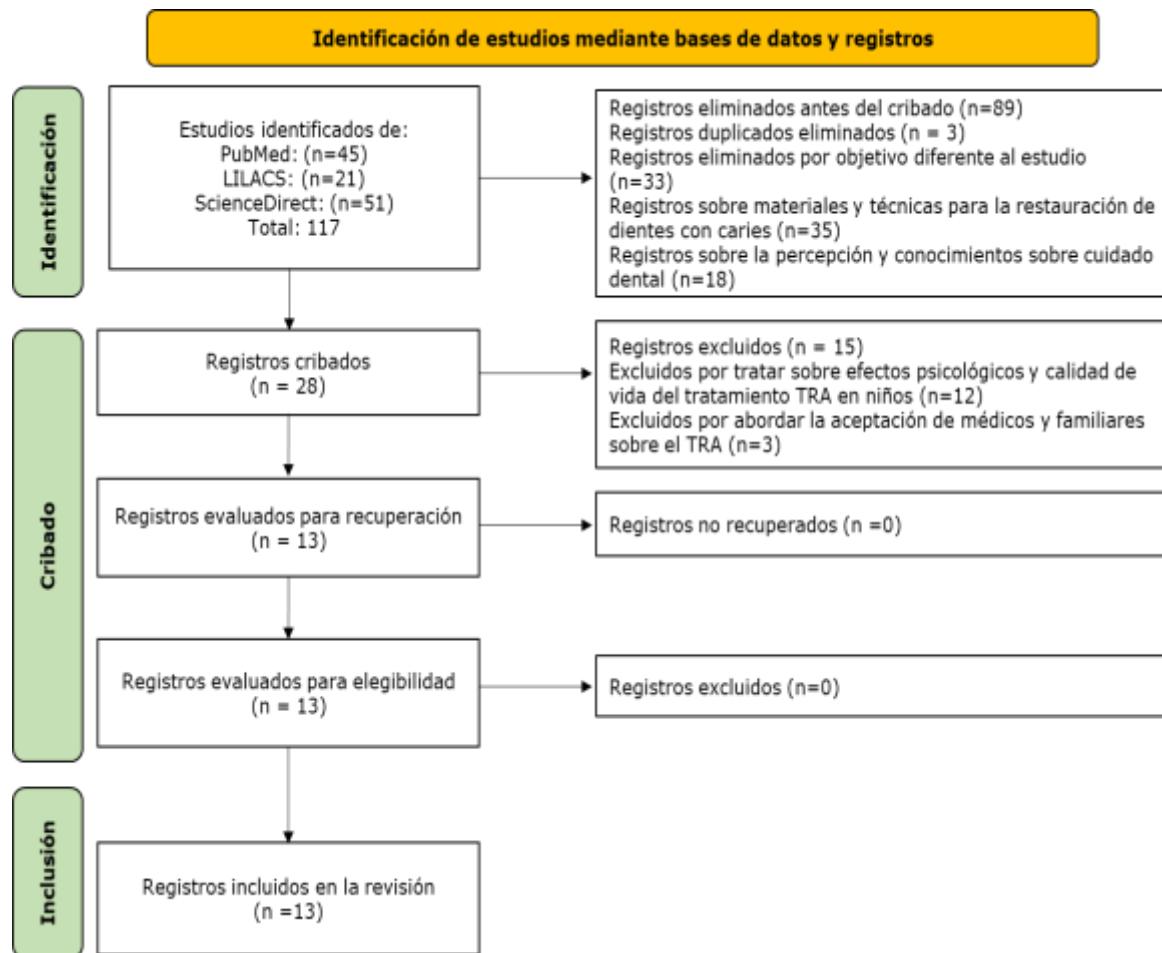
Jiang et al.,⁽⁸⁾ note that caries treatment involves long-term cavity preparation aimed at completely removing all caries-affected dental tissue and enlarging the cavity beyond the lesion's original size. However, this procedure can generate fear and anxiety in children. The conventional method of carious tissue removal and cavity preparation—based on rotary instruments—can be uncomfortable due to dental tissue heating, pulp pressure, vibration, anxiety, and potential pain, often requiring local anesthesia.^(9,10)

Due to the drawbacks of mechanical caries treatment, minimally invasive approaches have been promoted in recent years, aiming to preserve significant amounts of dental tissue in the presence of initial caries lesions. In this context, Torres,⁽¹¹⁾ defines atraumatic restorative treatment (ART) as a minimally invasive alternative designed to prevent caries lesion development and halt its progression in dentin using ART sealants. Another objective is to repair cavities in dentin through a minimally invasive procedure known as ART restoration.

ART involves the use of hand instruments to remove softened and demineralized carious tissue, which may leave soft dentin above the pulp floor and extending into the inner third of the dentin. This technique is specifically designed to treat superficial caries in primary teeth, with success rates exceeding 80 % and higher restoration survival rates for ART compared to amalgam methods.⁽¹²⁾

However, the use of ART in childhood caries removal remains challenging. As noted by Garbim et al.,⁽¹³⁾ despite growing awareness of its benefits, barriers persist—including those faced by dentists and factors affecting restoration longevity, such as cavity size, restorative material, and tooth type (primary or permanent). Additionally, Lin et al.,⁽¹⁴⁾ report that general dentists show slightly lower acceptance of this technique. Given these considerations, this review was conducted to evaluate the effectiveness of ART in caries removal in schoolchildren, analyzing restoration survival and clinical benefits.

METHODS


This study was designed as a systematic literature review following PRISMA methodology. The search period spanned from 2019 to 2023 to include recent research on the effectiveness of atraumatic restorative treatment (ART) in school-aged pediatric patients. Databases consulted included PubMed, ScienceDirect, and LILACS, along with grey literature and secondary references.

The search strategy employed algorithms combining keywords and Boolean operators: "atraumatic restorative treatment" OR "tratamiento restaurativo atraumático" AND "dental caries" AND "pediatric patients." Articles in Spanish and English were included to integrate multilingual evidence.

Inclusion criteria were: articles published within the defined timeframe, original studies (randomized clinical trials and observational studies), and publications with full-text access. Duplicates, articles without full text, narrative reviews, and studies not directly addressing ART in pediatric dentistry were excluded.

The selection process occurred in several stages: record identification, title and abstract screening, and full-text analysis. Initially, 117 records were obtained; 3 were removed due to duplication and 86 for thematic irrelevance. Finally, 13 articles met inclusion criteria and were incorporated into the analysis. The procedure was represented using a PRISMA flow diagram detailing identification, screening, eligibility, and inclusion phases.

Data extraction included variables such as author, year, study population, intervention type, materials used, and main outcomes. Analysis was qualitative, integrating findings on restoration survival rates, clinical benefits, and methodological limitations. No meta-analysis was performed due to heterogeneity in designs and materials, although common patterns emerged suggesting ART's efficacy as a minimally invasive technique in pediatric dentistry.

Fig. 1 presents the screening and selection process applied to scientific articles retrieved from databases.

DEVELOPMENT

This review aimed to assess the effectiveness of atraumatic restorative treatment (ART) in the survival of caries restorations in both primary and permanent dentition among school-aged pediatric patients. Findings indicate that ART demonstrates acceptable restoration survival rates and can be considered an economical and effective method for controlling caries progression in underserved populations—particularly when other restorative techniques are not feasible. Table 1 summarizes key results.

Table 1. Survival rates of caries restorations using Atraumatic Restorative Treatment (ART).

Source	Intervention	Outcome
Vollú et al. (2019) ⁽¹⁵⁾	Silver diamine fluoride (SDF) (n=49); ART (n=49)	Similar dentinal caries arrest rates: ART 88,67 %, SDF 96 % at 12 months.
Mohammed et al. (2022) ⁽¹⁶⁾	SMART (n=30); ART (n=30)	SMART: 76,67% (6 mo), 60% (12 mo). ART: 70% (6 mo), 53,33% (12 mo).
Arrow et al. (2021) ⁽¹⁷⁾	ART vs. Hall Technique (HT)	HT: 100% caries-free teeth; ART: 70% at 12 months (P<0,001).
Aly et al. (2023) ⁽¹⁸⁾	SMART vs. ART	SMART median survival: 11,8 months; ART: 11,6 months.
Faustino et al. (2019) ⁽¹⁹⁾	ART	Success rates: 94% (1 yr), 87,5% (2 yr), 82,9% (4 yr).
Satyarup et al. (2022) ⁽²⁰⁾	SDF vs. ART	SDF: 58,9% intact restorations at 9 mo; ART: 47,8% (p=0,004).
Araujo et al. (2020) ⁽²¹⁾	ART (n=65) vs. Hall Technique (n=66)	HT survival: 93,4%; ART: 32,7% at 36 months (p<0,001).
Mobarak et al. (2019) ⁽²²⁾	ART	Fuji IX GP: 95,4% survival; ChemFil Rock: 85,3% at 12 months (p=0,001).
Pesaressi et al. (2024) ⁽²³⁾	ART	Success: 90,3% (6 mo), 77,2% (12 mo) with non-retentive cavities.
Menezes et al. (2019) ⁽²⁴⁾	ART vs. composite resin	Conventional: 100% (6 mo), 98,7% (12 mo); ART: 98,7% (6 mo), 95,8% (12 mo).
Liu et al. (2025) ⁽²⁵⁾	ART vs. conventional	ART showed significantly lower secondary caries (P<0,05) and higher cooperation (P<0,05).
Jiang et al. (2020) ⁽²⁶⁾	SDF (n=101) vs. ART (n=93)	SDF survival: 75%; ART: 74% at 12 months. ART placement time shorter with SDF pre-treatment.
Menezes et al. (2021) ⁽²⁷⁾	ART vs. conventional	Conventional: 100% (6 mo), 98,7% (1 yr); ART: 98,7% (6 mo), 95,8% (1 yr).

Notes: ART = Atraumatic Restorative Treatment; SDF = Silver Diamine Fluoride; SMART = Silver Modified Atraumatic Restorative Technique

Furthermore, studies on ART restoration survival rates indicate dependence on operator skill and training, caries removal technique, and restorative materials. Mohammed et al.,⁽¹⁶⁾ reported a low 53,33 % survival rate at 12 months, attributed to residual cariogenic bacteria trapped under restorations due to manual excavation. In contrast, Faustino and Figueiredo,⁽¹⁹⁾ found 94 % success at 12 months, with failures linked to cement physical properties, caries removal technique, and operator skill.

Satyarup et al.,⁽²⁰⁾ reported 47,8 % survival at 9 months, likely due to inadequate retentive cavity form—since ART cavity preparation uses only hand instruments. Pesaressi et al.,⁽²³⁾ observed 77,2 % success at 12 months when using 20 % polyacrylic acid conditioning and encapsulated glass ionomer, identifying operator skill and restoration type as key success factors. Jiang et al.,⁽²⁶⁾ found 74 % survival at 24 months using hand excavators and high-viscosity glass ionomer, noting cement placement time as a critical factor.

When comparing ART to conventional rotary instrumentation, Menezes et al.,⁽²⁴⁾ reported ART survival of 95,8 % (12 months) versus 98,7 % for conventional high-speed bur treatment. In another study, ART showed lower survival (98,7 % at 6 months, 95,8 % at 1 year) compared to conventional methods (100 % at 6 months, 98,7 % at 1 year), attributed to more complete caries removal with rotary instruments, minimizing residual bacteria.⁽²⁷⁾ Thus, ART survival rates

are not substantially different from rotary methods, supporting its use when conventional techniques are unfeasible.

Regarding comparative effectiveness, ART performance improves when combined with SDF. Awad et al.,⁽¹⁶⁾ found lower success with ART than SMART (silver-modified ART). Aly et al.,⁽¹⁸⁾ reported longer survival with SMART, as SDF application before restoration reduces caries progression and irreversible pulpitis.

Compared to other minimally invasive methods, Satyarup et al.,⁽²⁰⁾ and Jiang et al.,⁽²⁶⁾ noted SDF's superior efficacy over ART in restoration survival, as SDF requires minimal operator skill. Meanwhile, Arrow et al.,⁽¹⁷⁾ and Araujo et al.,⁽²¹⁾ found ART less effective than the Hall Technique (HT), despite its long-term benefits.

Regarding ART benefits, Vollú et al.,⁽¹⁵⁾ highlighted reduced anxiety, fewer adverse effects, and improved quality of life in children. Arrow et al.,⁽¹⁷⁾ noted increased access to care and better oral health outcomes. Aly et al.,⁽¹⁸⁾ described ART as a cost-effective, patient-friendly approach beneficial for pediatric treatment. Araujo et al.,⁽²¹⁾ emphasized reduced discomfort during caries restoration. Liu et al.,⁽²⁵⁾ found greater willingness among children and parents to accept and cooperate with ART. Menezes et al.,⁽²⁷⁾ cited advantages including low-cost hand instruments, selective removal of infected tissue, and chemically adherent materials.

A limitation of this review is the scarcity of scientific literature directly comparing ART restoration survival with rotary instrumentation, as most studies compare ART to other minimally invasive techniques—reflecting its growing use in pediatric care due to benefits like reduced fear and stress. Therefore, further research comparing ART with other minimally invasive approaches is recommended.

CONCLUSIONS

ART is a minimally invasive technique using hand instruments for selective caries removal, demonstrating restoration survival rates between 47% and 90% in primary and permanent dentition of pediatric patients—though with progressive decline after 12 months. Its effectiveness is slightly inferior to conventional rotary methods (95.8% vs. 98.7%) and to alternatives like silver diamine fluoride and the Hall Technique. Combination with these methods is recommended to optimize outcomes. Key advantages include rapid application, reduced discomfort and anxiety in children, and improved treatment acceptance. However, its main limitation lies in comparatively lower efficacy relative to other restorative alternatives.

BIBLIOGRAPHIC REFERENCES

1. Aguilar A, Caro T, Saavedra J, França C, Fernandes K, Mesquita R, et al. La práctica restaurativa atraumática: Una alternativa dental bien recibida por los niños. Rev Panam Salud Pública/Pan Am J Public Heal [Internet]. 2012 [Citado 20/05/2025]; 31(2): 148-52. Available from: <https://www.scielosp.org/pdf/rpsp/2012.v31n2/148-152>

2. Muñoz C, Gambetta K, Santamaría R, Splieth C, Paris S, Schwendicke F, et al. ¿Cómo Intervenir el Proceso de Caries en Niños? Adaptación del Consenso de ORCA/EFCD/DGZ. *Int J Interdiscip Dent* [Internet]. 2022 [Citado 20/05/2025]; 15(1):48-53. Available from: <https://www.scielo.cl/pdf/ijoid/v15n1/2452-5588-ijoid-15-01-48.pdf>

3. Catalá M, Cortés O. La caries dental: una enfermedad que se puede prevenir. *An Pediatr Contin* [Internet]. 2014 [Citado 20/05/2025]; 12(3): 147-51. Available from: <https://www.elsevier.es/es-revista-anales-pediatrica-continuada-51-articulo-la-caries-dental-una-enfermedad-S1696281814701842>

4. Santos N, Moreno A, Lara N. Caries y salud bucal, percepciones acerca de la enfermedad. *Rev Odontopediatría Latinoam* [Internet]. 2021 [Citado 20/05/2025]; 11(2): 1-19. Available from: <https://www.revistaodontopediatria.org/index.php/alop/article/view/255>

5. Santos A, Lorido I, González A, Ferrer MÁ, Zapata MD, Ambel J. Prevalence of dental caries in children enrolled in preschool education from a low socioeconomic status area. *Pediatr Aten Primaria* [Internet]. 2019 [Citado 20/05/2025]; 21(82): 47-59. Available from: <https://scielo.isciii.es/pdf/pap/v21n82/1139-7632-pap-21-82-e47.pdf>

6. Morales L, Gómez González W. Caries dental y sus consecuencias clínicas relacionadas al impacto en la calidad de vida de preescolares de una escuela estatal. *Rev Estomatol Hered* [Internet]. 2019 [Citado 20/05/2025]; 29(1): 17-29. Available from: <http://www.scielo.org.pe/pdf/reh/v29n1/a03v29n1.pdf>

7. Cárdenas S, Pérez C, Angel M. Caries dental en niños de la primera infancia de la ciudad de Cartagena. Dental caries in children of early childhood in the city of Cartagena. *Cienc y Salud* [Internet]. 2018 [Citado 20/05/2025]; 10(2): 51-62. Available from: <https://revistas.uninunez.edu.co/index.php/cienciaysalud/article/view/1167>

8. Jiang M, Fan Y, Li KY, Lo ECM, Chu CH, Wong MCM. Factors affecting success rate of atraumatic restorative treatment (ART) restorations in children: A systematic review and meta-analysis. *J Dent* [Internet]. 2021 [Citado 20/05/2025]; 104: 103526. Available from: <https://pubmed.ncbi.nlm.nih.gov/33188846/>

9. Fronza L, Schmitz M, Porn JL, Garcia EJ, Bussadori SK, Hilgenberg SP. Remoció\textthreesuperior química-mecánica del tejido cariado en dientes permanentes: reporte de caso clínico. *Rev Estomatol\textthreesuperior Hered* [Internet]. 2017 [Citado 20/05/2025]; 27(2): 111-5. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1019-43552017000200007

10. Simbaña N, Ribadeneira L, Ramos R, Ortega M. Técnicas minimamente invasivas en odontopediatría para el tratamiento de lesiones cariosas en tiempos de COVID-19. Reporte de caso. *Odontol (Habana)* [Internet]. 2022 [Citado 20/05/2025]; 24(1):1-11. Available from: <https://doi.org/10.29166/odontologia.vol24.n1.2022-e3596>

11. Torres E. Tratamiento Restaurador Atraumático (TRA): Una alternativa libre de aerosoles tras la pandemia por COVID-19. *ResearchgateNet* [Internet]. 2020 [Citado 20/05/2025]. Available from: <https://multimedia.3m.com/mws/media/19493860/3m-oral-care-uruguay-infondet-plus-magazine-issue-no-97.pdf>

12. Dau R, Astudillo P, Zambrano M, Armijos F. Un enfoque sistemático para las técnicas de eliminación de caries profunda. Recimundo [Internet]. 2023 [Citado 20/05/2025]; 7(2): 98–106. Available from: <https://dialnet.unirioja.es/servlet/articulo?codigo=9006265>

13. Garbim J, Laux C, Tedesco T, Braga M, Raggio D. Atraumatic restorative treatment restorations performed in different settings: systematic review and meta-analysis. Aust Dent J [Internet]. 2021 [Citado 20/05/2025]; 66(4): 430–43. Available from: <https://onlinelibrary.wiley.com/doi/abs/10.1111/adj.12871>

14. Lin G, Cher C, Cheah K, Koh S, Chia C, Lim R, et al. Acceptability of atraumatic restorative treatment and Hall Technique among children, parents, and general dental practitioners: a systematic review and meta-analysis. Quintessence Int [Internet]. 2022 Jan [Citado 20/05/2025]; 53(2): 156–69. Available from: <https://pubmed.ncbi.nlm.nih.gov/34410073/>

15. Vollú A, Rodrigues GF, Rougemont Teixeira RV, Cruz LR, Dos Santos Massa G, de Lima Moreira JP, et al. Efficacy of 30% silver diamine fluoride compared to atraumatic restorative treatment on dentine caries arrestment in primary molars of preschool children: A 12-months parallel randomized controlled clinical trial. J Dent [Internet]. 2019 Sep [Citado 20/05/2025]; 88: 103165. Available from: <https://pubmed.ncbi.nlm.nih.gov/31279925/>

16. Mohammed S, Awad S, Wahba A. Comparison of Clinical Outcomes of Silver-modified Atraumatic Restorative Technique vs Atraumatic Restorative Technique in Primary Teeth: A Randomized Controlled Trial. J Contemp Dent Pract [Internet]. 2022 Nov [Citado 20/05/2025]; 23(11): 1140–5. Available from: <https://pubmed.ncbi.nlm.nih.gov/37073938/>

17. Arrow P, Piggott S, Carter S, McPhee R, Atkinson D, Mackean T, et al. Atraumatic Restorative Treatments in Australian Aboriginal Communities: A Cluster-randomized Trial. JDR Clin Transl Res [Internet]. 2021 Oct [Citado 20/05/2025]; 6(4): 430–9. Available from: <https://pubmed.ncbi.nlm.nih.gov/33016169/>

18. Aly A, Aziz A, Elghazawy R, El Fadl R. Survival Analysis and Cost Effectiveness of Silver Modified Atraumatic Restorative Treatment (SMART) and ART Occlusal Restorations in Primary Molars: a randomized controlled trial. J Dent [Internet]. 2023 Jan [Citado 20/05/2025]; 128: 104379. Available from: <https://pubmed.ncbi.nlm.nih.gov/36460236/>

19. Faustino D, Figueiredo M. Atraumatic restorative treatment-ART in early childhood caries in babies: 4 years of randomized clinical trial. Clin Oral Investig [Internet]. 2019 Oct [Citado 20/05/2025]; 23(10): 3721–9. Available from: <https://pubmed.ncbi.nlm.nih.gov/30666480/>

20. Satyarup D, Mohanty S, Nagarajappa R, Mahapatra I, Dalai RP. Comparison of the effectiveness of 38% silver diamine fluoride and atraumatic restorative treatment for treating dental caries in a school setting: A randomized clinical trial. Dent Med Probl [Internet]. 2022 [Citado 20/05/2025]; 59(2): 217–23. Available from: <https://pubmed.ncbi.nlm.nih.gov/35506381/>

21. Araujo M, Innes N, Bonifácio C, Hesse D, Olegário I, Mendes F, et al. Atraumatic restorative treatment compared to the Hall Technique for occluso-proximal carious lesions in primary molars; 36-month follow-up of a randomised control trial in a school setting. BMC Oral Health [Internet]. 2020 Nov [Citado 20/05/2025]; 20(1): 318. Available from: <https://pubmed.ncbi.nlm.nih.gov/33176756/>

22. Mobarak E, El-Deeb H, Daifalla LE, Ghaly M, Mustafa M, Sabry D, et al. Survival of multiple-surface ART restorations using a zinc-reinforced glass-ionomer restorative after 2 years: A randomized triple-blind clinical trial. *Dent Mater* [Internet]. 2019 Sep [Citado 20/05/2025]; 35(9): 185-92. Available from: <https://pubmed.ncbi.nlm.nih.gov/31235189/>

23. Pesaresi E, Zelada-Lopez D, Cosme T, Diaz J, Huanqui M, Fidela de Lima Navarro M, et al. Randomised clinical trial of Class II ART restoration in primary teeth with and without retentive grooves after 12 months. *Eur J Paediatr Dent* [Internet]. 2024 Mar [Citado 20/05/2025]; 25(1): 42-9. Available from: <https://pubmed.ncbi.nlm.nih.gov/38078810/>

24. Menezes R, Velasco S, Bastos R, Molina G, Honório H, Frencken J, et al. Randomized clinical trial of class II restoration in permanent teeth comparing ART with composite resin after 12 months. *Clin Oral Investig* [Internet]. 2019 Sep [Citado 20/05/2025]; 23(9): 3623-35. Available from: <https://pubmed.ncbi.nlm.nih.gov/30612246/>

25. Liu Z-H, Ma H-R, Miao F, Zhou S. [Analysis of the effect of improved ART with high-intensity glass ionomer cement in the treatment of primary caries in children]. *Shanghai Kou Qiang Yi Xue* [Internet]. 2021 Jun [Citado 20/05/2025]; 30(3): 278-82. Available from: <https://pubmed.ncbi.nlm.nih.gov/34476445/>

26. Jiang M, Wong MCM, Chu CH, Dai L, Lo ECM. A 24-month randomized controlled trial on the success rates of restoring untreated and SDF- treated dentine caries lesions in primary teeth with the ART approach. *J Dent* [Internet]. 2020 Sep [Citado 20/05/2025]; 100:103435. Available from: <https://pubmed.ncbi.nlm.nih.gov/32712307/>

27. Menezes R, Velasco S, BRESCIANI E, Bastos R, Navarro MF. A prospective and randomized clinical trial evaluating the effectiveness of ART restorations with high-viscosity glass-ionomer cement versus conventional restorations with resin composite in Class II cavities of permanent teeth: two-year follow-up. *J Appl Oral Sci* [Internet]. 2021 [Citado 20/05/2025]; 29: e20200609. Disponible en: <https://pubmed.ncbi.nlm.nih.gov/33656064/>