Sistema de apoyo al diagnóstico a distancia de enfermedades genéticas basado en mapas cognitivos difusos

Autores/as

  • Yadira Barroso Rodríguez Universidad de las Ciencias Informáticas. La Habana. Cuba

Palabras clave:

DIAGNÓSTICO, GENETICA, BASES DE DATOS GENÉTICAS, INVESTIGACIÓN GENÉTICA.

Resumen


Introducción: el proceso de toma de decisiones médicas es complejo, ya que, a menudo, los datos médicos y la información pueden ser imprecisos, contradictorios, ausentes o no fáciles de interpretar. 

Objetivo: desarrollar un sistema de apoyo al diagnóstico a distancia de enfermedades genéticas basado en mapas cognitivos difusos que permita mejorar la calidad de los servicios de salud en la Red Nacional de Genética Médica.

 Método: es una investigación aplicativa con intervención tecnológica que implementa un sistema de apoyo a la toma de decisiones basado en mapas cognitivos difusos.

Resultados: se presenta un sistema para la toma de decisiones, que facilita el análisis de diagnóstico médico, como parte de los resultados obtenidos con el desarrollo del proyecto.

Conclusiones: se obtuvo un sistema que posibilitó evaluar signos clínicos presentados en los pacientes, mayor organización de la información a recoger, mejorar la rapidez de los diagnósticos y la conducta a seguir, pudiendo recibir la atención en centros de salud distantes sin necesidad de ser trasladados, lo cual conllevaría a una reducción en los costos por concepto de transporte, gastos de viaje, combustible y del tiempo en que recibe los beneficios de la atención sanitaria.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Yadira Barroso Rodríguez, Universidad de las Ciencias Informáticas. La Habana. Cuba

Ingeniera en Ciencias Informáticas. Máster en Informática Aplicada. Profesor Asistente.

Citas

1. Chrysafiadi K., Virvou M. Fuzzy Logic for Adaptive Instruction in an E-learning Environment for Computer Programming. Fuzzy Systems, IEEE Transactions [internet] on 2015 feb[cited 2017 oct 17]; 23(1): [aprox.13.p.]. Available from: http://ieeexplore.ieee.org/document/6763091/.

2. Aguilar J., Survey A. About Fuzzy Cognitive Maps Papers. INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION [internet] 2005 [cited 2017 oct.17];3(2): Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.2446&rep=rep1&type=pdf

3. Leyva M. , Rosado R. Modelado y análisis de los factores críticos de éxito de los proyectos de software mediante mapas cognitivos difusos. Ciencias de la Información[internet] 2012 [cited 2017 oct. 17]; 43(2):[aprox.5p]. Available from: http://www.redalyc.org/articulo.oa?id=181423798006.

4. Mar O., S. I, Gulín J. Competency assessment model for a virtual laboratory system and distance using fuzzy cognitive map. REVISTA INVESTIGACION OPERACIONAL[internet] 2017 [cited 2017 oct 17];38(2):[Aprox.8p.]. Available from: http://rev-inv-ope.univ-paris1.fr/fileadmin/rev-inv-ope/files/38217/38217-07.pdf

5. Contreras J., Paz P, Amaya D. Realistic Ecosystem Modelling with Fuzzy Cognitive Maps. International Journal of Computational Intelligence Research[internet] 2007 [cited 2017 oct. 17];3(2):[Aprox.5p.]. Available from: https://pdfs.semanticscholar.org/5f37/07892c560c47608fe95d630989f20a5a745b.pdf.

6. Leyva M. Modelo de ayuda a la toma de decisiones basado en Mapas Cognitivos Difusos. Tesis presentada en opción al Grado Científico de Doctor en Ciencias Técnicas ;2013.Available from: https://www.researchgate.net/publication/263221297_MODELO_DE_AYUDA_A_LA_TOMA_DE_DECISIONES_BASADO_EN_MAPAS_COGNITIVOS_DIFUSOS.

7. Grau I. , Gonzalo N. Mutating HIV protease protein using Ant Colony Optimization and Fuzzy Cognitive Maps: drug susceptibility analysis. Computacion y Sistemas[internet] 2014 [cited 2017 oct 17];18(1):[Aprox.12p.]. Available from: http://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/1587.

8. González J., Mar O. Algoritmo de clasificación genética para la generación de reglas de clasificación. Publicaciones[internet] 2015 [cited 2017 oct 17 ];8(1):[Aprox.13]. Available from: https://www.redib.org/recursos/Record/oai_articulo983540-algoritmo-clasificacion-genetica-generacion-reglas-clasificacion.

9. Médica C.N.d.G. Portal de la Genética Cubana; 2015. Available from: http://articulos.sld.cu/genetica/archives/tag/genetica.

10. Pedrycz W. , Homenda W. From Fuzzy Cognitive Maps to Granular Cognitive Maps. Fuzzy Systems, IEEE Transactions [internet] on 2014 [cited 2017 oct. 17]; 22( 4):[Aprox.10p.] . Available from: http://ieeexplore.ieee.org/document/6576138/.

11. Mar O.,Leyva M.,Santana I. Modelo multicriterio multiexperto utilizando Mapa Cognitivo Difuso para la evaluación de competencias. Ciencias de la Información[internet] 2015 [cited 2017 oct 17]; 46( 2):[Aprox.6p.]. Available from: http://www.redalyc.org/html/1814/181441052004/

12. LÓPEZ R., MAURA G. La técnica de Iadov. Una aplicación en el estudio de la satisfacción de los alumnos por las clases de Educación Física. Revista Digital[internet] Abril 2002[citado 2017 oct 17]; 47(202). Available from: http://www.efdeportes.com/efd47/iadov.htm

13. Bouza C. Métodos cuantitativos para la toma de decisiones en contabilidad, administración, economía; 2016. Available from: https://www.researchgate.net/publication/303551295_METODOS_CUANTITATIVOS_PARA_LA_TOMA_DE_DECISIONES_EN_CONTABILIDAD_ADMINISTRACION_ECONOMIA

Descargas

Publicado

2017-11-01

Cómo citar

1.
Barroso Rodríguez Y. Sistema de apoyo al diagnóstico a distancia de enfermedades genéticas basado en mapas cognitivos difusos. Rev Ciencias Médicas [Internet]. 1 de noviembre de 2017 [citado 16 de agosto de 2025];21(6):810-9. Disponible en: https://revcmpinar.sld.cu/index.php/publicaciones/article/view/3135

Número

Sección

ARTÍCULO ORIGINAL