Support system for remote diagnosis of genetic diseases based on diffuse cognitive maps

Authors

  • Yadira Barroso Rodríguez Universidad de las Ciencias Informáticas. La Habana. Cuba

Keywords:

DIAGNOSIS, GENETICS, DATABASES, GENETIC, GENETIC RESEARCH.

Abstract

Introduction: the medical decision-making process is complex, since medical data and information can often be inaccurate, contradictory, absent or not easy to be interpreted.

Objective: to develop a support system for the remote diagnosis of genetic diseases based on diffuse cognitive maps that allow improving the quality of health services in the National Network of Medical Genetics.


Method: it is an applied research with technological intervention that implements a system of decision-making support based on diffuse cognitive maps.


Results: a system for decision-making is presented, which facilitates the analysis of medical diagnosis, as part of the results obtained with the development of the project.


Conclusions: a system was obtained that made possible to evaluate clinical signs presented in the patients, greater organization of the information to be collected, to improve the speed of the diagnoses and the procedures to be followed, being able to give care in distant health centers without needing to be transferred, which would lead to a reduction in transportation costs, travel expenses, liquid fuels, as well as the time the benefits of health care are provided.

 


Downloads

Download data is not yet available.

Author Biography

Yadira Barroso Rodríguez, Universidad de las Ciencias Informáticas. La Habana. Cuba

Ingeniera en Ciencias Informáticas. Máster en Informática Aplicada. Profesor Asistente.

References

1. Chrysafiadi K., Virvou M. Fuzzy Logic for Adaptive Instruction in an E-learning Environment for Computer Programming. Fuzzy Systems, IEEE Transactions [internet] on 2015 feb[cited 2017 oct 17]; 23(1): [aprox.13.p.]. Available from: http://ieeexplore.ieee.org/document/6763091/.

2. Aguilar J., Survey A. About Fuzzy Cognitive Maps Papers. INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION [internet] 2005 [cited 2017 oct.17];3(2): Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.2446&rep=rep1&type=pdf

3. Leyva M. , Rosado R. Modelado y análisis de los factores críticos de éxito de los proyectos de software mediante mapas cognitivos difusos. Ciencias de la Información[internet] 2012 [cited 2017 oct. 17]; 43(2):[aprox.5p]. Available from: http://www.redalyc.org/articulo.oa?id=181423798006.

4. Mar O., S. I, Gulín J. Competency assessment model for a virtual laboratory system and distance using fuzzy cognitive map. REVISTA INVESTIGACION OPERACIONAL[internet] 2017 [cited 2017 oct 17];38(2):[Aprox.8p.]. Available from: http://rev-inv-ope.univ-paris1.fr/fileadmin/rev-inv-ope/files/38217/38217-07.pdf

5. Contreras J., Paz P, Amaya D. Realistic Ecosystem Modelling with Fuzzy Cognitive Maps. International Journal of Computational Intelligence Research[internet] 2007 [cited 2017 oct. 17];3(2):[Aprox.5p.]. Available from: https://pdfs.semanticscholar.org/5f37/07892c560c47608fe95d630989f20a5a745b.pdf.

6. Leyva M. Modelo de ayuda a la toma de decisiones basado en Mapas Cognitivos Difusos. Tesis presentada en opción al Grado Científico de Doctor en Ciencias Técnicas ;2013.Available from: https://www.researchgate.net/publication/263221297_MODELO_DE_AYUDA_A_LA_TOMA_DE_DECISIONES_BASADO_EN_MAPAS_COGNITIVOS_DIFUSOS.

7. Grau I. , Gonzalo N. Mutating HIV protease protein using Ant Colony Optimization and Fuzzy Cognitive Maps: drug susceptibility analysis. Computacion y Sistemas[internet] 2014 [cited 2017 oct 17];18(1):[Aprox.12p.]. Available from: http://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/1587.

8. González J., Mar O. Algoritmo de clasificación genética para la generación de reglas de clasificación. Publicaciones[internet] 2015 [cited 2017 oct 17 ];8(1):[Aprox.13]. Available from: https://www.redib.org/recursos/Record/oai_articulo983540-algoritmo-clasificacion-genetica-generacion-reglas-clasificacion.

9. Médica C.N.d.G. Portal de la Genética Cubana; 2015. Available from: http://articulos.sld.cu/genetica/archives/tag/genetica.

10. Pedrycz W. , Homenda W. From Fuzzy Cognitive Maps to Granular Cognitive Maps. Fuzzy Systems, IEEE Transactions [internet] on 2014 [cited 2017 oct. 17]; 22( 4):[Aprox.10p.] . Available from: http://ieeexplore.ieee.org/document/6576138/.

11. Mar O.,Leyva M.,Santana I. Modelo multicriterio multiexperto utilizando Mapa Cognitivo Difuso para la evaluación de competencias. Ciencias de la Información[internet] 2015 [cited 2017 oct 17]; 46( 2):[Aprox.6p.]. Available from: http://www.redalyc.org/html/1814/181441052004/

12. LÓPEZ R., MAURA G. La técnica de Iadov. Una aplicación en el estudio de la satisfacción de los alumnos por las clases de Educación Física. Revista Digital[internet] Abril 2002[citado 2017 oct 17]; 47(202). Available from: http://www.efdeportes.com/efd47/iadov.htm

13. Bouza C. Métodos cuantitativos para la toma de decisiones en contabilidad, administración, economía; 2016. Available from: https://www.researchgate.net/publication/303551295_METODOS_CUANTITATIVOS_PARA_LA_TOMA_DE_DECISIONES_EN_CONTABILIDAD_ADMINISTRACION_ECONOMIA

Published

2017-11-01

How to Cite

1.
Barroso Rodríguez Y. Support system for remote diagnosis of genetic diseases based on diffuse cognitive maps. Rev Ciencias Médicas [Internet]. 2017 Nov. 1 [cited 2025 Aug. 16];21(6):810-9. Available from: https://revcmpinar.sld.cu/index.php/publicaciones/article/view/3135

Issue

Section

ORIGINAL ARTICLES