Efecto del Camphenol Plus sobre el músculo liso vascular de vena porta en ratas Wistar

Autores/as

Palabras clave:

MÚSCULO LISO VASCULAR, TENSIÓN MUSCULAR, VASODILATACIÓN, TÉCNICAS IN VITRO.

Resumen

Introducción: uno de los antisépticos comúnmente empleado en Estomatología desde el pasado siglo y que mantiene su uso hasta la actualidad, lo constituye el Camphenol Plus. Son escasos los reportes científicos de su efecto sobre el endotelio y la dinámica contráctil del músculo liso vascular, en especial de tejidos venosos como la vena porta hepática.

Objetivo: determinar el efecto del Camphenol Plus sobre el músculo liso vascular de la vena porta.

Métodos: se realizó una investigación experimental preclínica, con la utilización de 21 venas porta obtenidas de ratas Wistar. Las preparaciones realizadas se colocaron en baño de órganos, se registró la tensión desarrollada por el músculo liso vascular tras la adición de diez microlitros de Camphenol Plus, en diferentes concentraciones y durante diferentes intervalos de tiempo.

Resultados: el Camphenol Plus, tras la preactivación del musculo liso vascular de la vena porta, indujo vasorelajación, la que se incrementó durante todo el tiempo de estudio y según el incremento de las concentraciones del medicamento. Existieron diferencias significativas entre los valores de tensión promedios registrados en los diferentes intervalos de tiempo con los de la tensión espontánea basal y la tensión base inicial.

Conclusiones: el Camphenol Plus, indujo “in vitro”, relajación de la musculatura lisa de la vena porta a través de un acoplamiento excitación-contracción de tipo farmacomecánico.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Oscar Rodríguez Reyes, Universidad de Ciencias Médicas de Santiago de Cuba. Facultad de Estomatología

Estomatólogo Especialista de Segundo Grado en Fisiología Normal y Patológica. Máster en Atención de Urgencias Estomatológicas. Profesor Auxiliar e Investigador Agregado

Thomas Noack, Universidad de Rostock. Facultad de Medicina. Instituto de Fisiología "Oscar Langerdorff". Alemania

Doctor en Ciencias

Ramón Enrique García Rodríguez, Universidad de Ciencias Médicas de Santiago de Cuba. Facultad de Estomatología

Doctor en ciencias

Citas

1. Pal H, Sarkar A, Lopamoodra D, Subrata S, Sarkar S. Application of Intracanal Medicaments: a review. IOSR-JMDS [Internet]. 2019 January [citado 29/07/2020]; 18(1):14-21. Disponible en: http://iosrjournals.org/iosr-jdms/papers/Vol18-issue1/Version-3/B1801031421.pdf

2. Kumar A, Tamanna S, Iftekhar H. Intracanal medicaments - their use in modern endodontics: A narrative review. J Oral Res Rev [Internet]. 2019 [citado 29/07/2020]; 11: 89-94. Disponible en: http://www.jorr.org/article.asp?issn=2249-4987;year=2019;volume=11;issue=2;spage=94;epage=99;aulast=Kumar

3. Wright PP, Walsh LJ. Optimizing Antimicrobial Agents in Endodontics. In: Kumavath RN. Antibacterial Agents. IntechOpen [Internet]. 2017 May [citado 29/07/2020]. Disponible en: https://www.intechopen.com/books/antibacterial-agents/optimizing-antimicrobial-agents-in-endodontics

4. Canalda C. Medicación intraconducto. En: Canalda C, Brau E, editores. Endodoncia. Técnicas clínicas y Bases científicas. 4a Edición. España. Editorial Elsevier, 2019: 206 https://www.academia.edu/36232234/Canalda_Endodoncia_Tecnicas_Clinicas_Bases_Cientificas_pdf

5. Abd Gami A, Yunus Shukor M, Abdul Khalil K, Aini Dahalan F, Khalid A, Aqlima Ahmad S. Phenol and its toxicity. Journal of Environmental Microbiology and Toxicology [Internet].2014. [citado 16/06/2020]; 2(1): [aprox.13 p.]. Disponible en: https://journal.hibiscuspublisher.com/index.php/JEMAT/article/view/89/624

6. Ambikathanaya UK. Intracanal antiseptic medications; a review. UJMDS. [Internet]. 2014 July-Sept. [citado 16/06/2020]; 02(03): [aprox.6 p.]. Disponible en: https://www.researchgate.net/publication/308916130_Unique_Journal_of_Medical_and_Dental_Sciences_INTRACANAL_ANTISEPTIC_MEDICATIONS_A_REVIEW

7. Tingting G, Jiangyuan H, Yongmei Q, Xueyan G, Lin M, Cheng Z et al. The toxic effects of chlorophenols and associated mechanisms in fish. Aquatic Toxicology [Internet]. 2017 March. [citado 12/09/2020]; 184: 78-93. Disponible en: https://scholar.google.com.cu/scholar?q=The+toxic+effects+of+chlorophenols+and+associated+mechanisms+in+fish.+Aquatic+Toxicology&hl=es&as_sdt=0&as_vis=1&oi=scholart

8. Syed AU, Thanhmai L, Navedo MF, Nieves-Cintrón M. Canales iónicos y su regulación. IntechOpen [Internet]. 2019 Oct 3 [citado 05/09/2020]. Disponible en: https://www.intechopen.com/online-first/ion-channels-and-their-regulation-in-vascular-smooth-muscle

9. Bergantin LB. The Control of Vascular Smooth Muscle Tone: Concepts Coming from Ca2+ and cAMP Signalling. J Thrombo Cir [Internet]. 2018. [citado 05/09/2020]; 4(1): e111. Disponible en: https://www.longdom.org/open-access/the-control-of-vascular-smooth-muscle-tone-concepts-coming-fromca2-and-camp-signalling-2572-9462-1000e111.pdf

10. Aiello EA. Canales de potasio y calcio en el músculo liso vascular. Capítulo 19. En: Colectivo de autores. Hipertensión arterial, epidemiología, fisiología, fisiopatología, diagnóstico y terapéutica. Sociedad Argentina de Hipertensión Arterial (SAHA) [Internet]. 2017. [citado 05/09/2020]: 87-92. Disponible en: http://www.saha.org.ar/pdf/libro/Cap.019.pdf

11. Hernández Muñoz L, Godoy López MA, Blanco López ME, Belda González I, Jean Pierre V, Gómez Hernández J. Anatomía y patología venosa intrahepática. Lo que el radiólogo debería conocer. SERAM (Sociedad Española de Radiología Médica) [Internet]. 2019 [citado 08/03/2021]: [aprox. 30 p.]. Disponible en: https://piper.espacio-seram.com/index.php/seram/article/view/2235/1109

12. Mansilla S, Mansilla A, Pouy A, Garretano A, Cerchiari E, Armand Ugón G. Origen de la vena porta: estudio anatómico. Revista Argentina de Anatomía Clínica [Internet]. 2020 Mar [citado 06/03/2021]; 12(1). Disponible en: https://revistas.unc.edu.ar/index.php/anatclinar/article/view/27560

13. Carneiro C, Brito J, Bilreiro C, Barros M, Bahía C, Santiago I et al. Todo sobre la vena porta: una muestra pictórica de anatomía, variantes y fisiopatología. Insights into Imaging [Internet]. 2019 april [citado 06/03/2021]; 10(18) [aprox.18p.] https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-019-0716-8.pdf

14. Pereira da Silva JD, Ballego G. Pharmacological characterization of the calcium influx pathways involved in nitric oxide production by endothelial cells. Einstein (Sao Paulo) [Internet]. 2019 [citado 06/03/2021]; 17(3). Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-45082019000300204

15. Padilla Pérez J, Castillo Hernández MDC, Padilla Keymole J, Crivelli Puga A, López Canales OA, Zambrano Padilla R. Técnicas de modelado para distinguir la cinética de la contracción de la aorta torácica inducida por fenilefrina en ratas de diferentes edades. Rev Hosp Jua Mex [Internet]. 2018 [citado 06/03/2021]; 85(4): 208-21. Disponible en: https://www.medigraphic.com/pdfs/juarez/ju-2018/ju184e.pdf

16. Patejdl R, Noack TK. Calcium movement in smooth muscle and evaluation of graded functional intercellular coupling. Chaos[Internet]. 2018 Oct [citado 06/03/2021]; 28(10): 106311. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30384639/

17. Martin P. Farmacodinamia del músculo liso vascular. En: Consolini AE, Ragone MI. Farmacodinamia general e interacciones medicamentosas. Mecanismo de acción de fármacos y metodología de estudio experimental. [Internet]. Argentina: Editorial Universidad de la Plata, 2017 [citado 06/03/2021]. Disponible en: http://sedici.unlp.edu.ar/bitstream/handle/10915/67056/Documento_completo__.pdf?sequence=1#page=64

18. Ávila Medina J. Comunicación funcional entre canales de calcio tipo L y canales de calcio activados por reservorios, su papel en la regulación del tono vascular. [Trabajo de Investigación para optar por el Título de Doctor] Universidad de Sevilla. España; 2017 [citado 06/03/2021]. Disponible en: https://idus.us.es/bitstream/handle/11441/63846/TESIS%20Javier%20%C1vila%20Medina.pdf?sequence=1

19. Ulyanova AV. Excitability of Vascular Smooth Muscle IntechOpen [Internet]. 2019 March [citado 06/03/2021]. Disponible en: https://www.intechopen.com/books/muscle-cells-recent-advances-and-future-perspectives/excitability-of-vascular-smooth-muscle

20. Qingsong L, Guiling Zhao, Xi F, Xiaohong P, Huayuan T, Hong W et al. IP3 receptors regulate vascular smooth muscle contractility and hypertension. JCI Insight [Internet]. 2016 Oct [citado 06/03/2021]; 1(17): e89402. Disponible en: https://insight.jci.org/articles/view/89402

Descargas

Publicado

2021-06-12

Cómo citar

1.
Rodríguez Reyes O, Noack T, Patejdl R, García Rodríguez RE, Cortés Camacho AA. Efecto del Camphenol Plus sobre el músculo liso vascular de vena porta en ratas Wistar. Rev Ciencias Médicas [Internet]. 12 de junio de 2021 [citado 1 de agosto de 2025];25(3):e5007. Disponible en: https://revcmpinar.sld.cu/index.php/publicaciones/article/view/5007

Número

Sección

ARTÍCULO ORIGINAL