Effect of Camphenol Plus on portal vein vascular smooth muscle in Wistar rats

Authors

Keywords:

MUSCLE, SMOOTH, VASCULAR, MUSCLE TONUS, VASODILATION, IN VITRO TECHNIQUES.

Abstract

Introduction: Camphenol Plus is one of the antiseptics commonly used in Dentistry since the last century and still in use today. There are few scientific reports of its effect on the endothelium and contractile dynamics of vascular smooth muscle, especially in venous tissues such as the hepatic portal vein.

Objective: to determine the effect of Camphenol Plus on the vascular smooth muscle of the portal vein.

Methods: a preclinical experimental investigation was carried out using 21 portal veins obtained from Wistar rats. The preparations were placed in an organ bath and the tension developed by the vascular smooth muscle was recorded after the addition of ten microliter of Camphenol Plus, at different concentrations and during different time intervals.

Results: Camphenol Plus, after the preactivation of the vascular smooth muscle of the portal vein, induced relaxation, which increased throughout the study time and according to the increase in drug concentrations. There were significant differences between the average tension values recorded in the different time intervals with those of the basal spontaneous tension and the initial baseline tension.

Conclusions: Camphenol Plus induced "in vitro" relaxation of portal venous smooth muscles through a pharmacomechanical excitation-contraction coupling.

Downloads

Download data is not yet available.

Author Biographies

Oscar Rodríguez Reyes, Universidad de Ciencias Médicas de Santiago de Cuba. Facultad de Estomatología

Estomatólogo Especialista de Segundo Grado en Fisiología Normal y Patológica. Máster en Atención de Urgencias Estomatológicas. Profesor Auxiliar e Investigador Agregado

Thomas Noack, Universidad de Rostock. Facultad de Medicina. Instituto de Fisiología "Oscar Langerdorff". Alemania

Doctor en Ciencias

Ramón Enrique García Rodríguez, Universidad de Ciencias Médicas de Santiago de Cuba. Facultad de Estomatología

Doctor en ciencias

References

1. Pal H, Sarkar A, Lopamoodra D, Subrata S, Sarkar S. Application of Intracanal Medicaments: a review. IOSR-JMDS [Internet]. 2019 January [citado 29/07/2020]; 18(1):14-21. Disponible en: http://iosrjournals.org/iosr-jdms/papers/Vol18-issue1/Version-3/B1801031421.pdf

2. Kumar A, Tamanna S, Iftekhar H. Intracanal medicaments - their use in modern endodontics: A narrative review. J Oral Res Rev [Internet]. 2019 [citado 29/07/2020]; 11: 89-94. Disponible en: http://www.jorr.org/article.asp?issn=2249-4987;year=2019;volume=11;issue=2;spage=94;epage=99;aulast=Kumar

3. Wright PP, Walsh LJ. Optimizing Antimicrobial Agents in Endodontics. In: Kumavath RN. Antibacterial Agents. IntechOpen [Internet]. 2017 May [citado 29/07/2020]. Disponible en: https://www.intechopen.com/books/antibacterial-agents/optimizing-antimicrobial-agents-in-endodontics

4. Canalda C. Medicación intraconducto. En: Canalda C, Brau E, editores. Endodoncia. Técnicas clínicas y Bases científicas. 4a Edición. España. Editorial Elsevier, 2019: 206 https://www.academia.edu/36232234/Canalda_Endodoncia_Tecnicas_Clinicas_Bases_Cientificas_pdf

5. Abd Gami A, Yunus Shukor M, Abdul Khalil K, Aini Dahalan F, Khalid A, Aqlima Ahmad S. Phenol and its toxicity. Journal of Environmental Microbiology and Toxicology [Internet].2014. [citado 16/06/2020]; 2(1): [aprox.13 p.]. Disponible en: https://journal.hibiscuspublisher.com/index.php/JEMAT/article/view/89/624

6. Ambikathanaya UK. Intracanal antiseptic medications; a review. UJMDS. [Internet]. 2014 July-Sept. [citado 16/06/2020]; 02(03): [aprox.6 p.]. Disponible en: https://www.researchgate.net/publication/308916130_Unique_Journal_of_Medical_and_Dental_Sciences_INTRACANAL_ANTISEPTIC_MEDICATIONS_A_REVIEW

7. Tingting G, Jiangyuan H, Yongmei Q, Xueyan G, Lin M, Cheng Z et al. The toxic effects of chlorophenols and associated mechanisms in fish. Aquatic Toxicology [Internet]. 2017 March. [citado 12/09/2020]; 184: 78-93. Disponible en: https://scholar.google.com.cu/scholar?q=The+toxic+effects+of+chlorophenols+and+associated+mechanisms+in+fish.+Aquatic+Toxicology&hl=es&as_sdt=0&as_vis=1&oi=scholart

8. Syed AU, Thanhmai L, Navedo MF, Nieves-Cintrón M. Canales iónicos y su regulación. IntechOpen [Internet]. 2019 Oct 3 [citado 05/09/2020]. Disponible en: https://www.intechopen.com/online-first/ion-channels-and-their-regulation-in-vascular-smooth-muscle

9. Bergantin LB. The Control of Vascular Smooth Muscle Tone: Concepts Coming from Ca2+ and cAMP Signalling. J Thrombo Cir [Internet]. 2018. [citado 05/09/2020]; 4(1): e111. Disponible en: https://www.longdom.org/open-access/the-control-of-vascular-smooth-muscle-tone-concepts-coming-fromca2-and-camp-signalling-2572-9462-1000e111.pdf

10. Aiello EA. Canales de potasio y calcio en el músculo liso vascular. Capítulo 19. En: Colectivo de autores. Hipertensión arterial, epidemiología, fisiología, fisiopatología, diagnóstico y terapéutica. Sociedad Argentina de Hipertensión Arterial (SAHA) [Internet]. 2017. [citado 05/09/2020]: 87-92. Disponible en: http://www.saha.org.ar/pdf/libro/Cap.019.pdf

11. Hernández Muñoz L, Godoy López MA, Blanco López ME, Belda González I, Jean Pierre V, Gómez Hernández J. Anatomía y patología venosa intrahepática. Lo que el radiólogo debería conocer. SERAM (Sociedad Española de Radiología Médica) [Internet]. 2019 [citado 08/03/2021]: [aprox. 30 p.]. Disponible en: https://piper.espacio-seram.com/index.php/seram/article/view/2235/1109

12. Mansilla S, Mansilla A, Pouy A, Garretano A, Cerchiari E, Armand Ugón G. Origen de la vena porta: estudio anatómico. Revista Argentina de Anatomía Clínica [Internet]. 2020 Mar [citado 06/03/2021]; 12(1). Disponible en: https://revistas.unc.edu.ar/index.php/anatclinar/article/view/27560

13. Carneiro C, Brito J, Bilreiro C, Barros M, Bahía C, Santiago I et al. Todo sobre la vena porta: una muestra pictórica de anatomía, variantes y fisiopatología. Insights into Imaging [Internet]. 2019 april [citado 06/03/2021]; 10(18) [aprox.18p.] https://insightsimaging.springeropen.com/track/pdf/10.1186/s13244-019-0716-8.pdf

14. Pereira da Silva JD, Ballego G. Pharmacological characterization of the calcium influx pathways involved in nitric oxide production by endothelial cells. Einstein (Sao Paulo) [Internet]. 2019 [citado 06/03/2021]; 17(3). Disponible en: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-45082019000300204

15. Padilla Pérez J, Castillo Hernández MDC, Padilla Keymole J, Crivelli Puga A, López Canales OA, Zambrano Padilla R. Técnicas de modelado para distinguir la cinética de la contracción de la aorta torácica inducida por fenilefrina en ratas de diferentes edades. Rev Hosp Jua Mex [Internet]. 2018 [citado 06/03/2021]; 85(4): 208-21. Disponible en: https://www.medigraphic.com/pdfs/juarez/ju-2018/ju184e.pdf

16. Patejdl R, Noack TK. Calcium movement in smooth muscle and evaluation of graded functional intercellular coupling. Chaos[Internet]. 2018 Oct [citado 06/03/2021]; 28(10): 106311. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30384639/

17. Martin P. Farmacodinamia del músculo liso vascular. En: Consolini AE, Ragone MI. Farmacodinamia general e interacciones medicamentosas. Mecanismo de acción de fármacos y metodología de estudio experimental. [Internet]. Argentina: Editorial Universidad de la Plata, 2017 [citado 06/03/2021]. Disponible en: http://sedici.unlp.edu.ar/bitstream/handle/10915/67056/Documento_completo__.pdf?sequence=1#page=64

18. Ávila Medina J. Comunicación funcional entre canales de calcio tipo L y canales de calcio activados por reservorios, su papel en la regulación del tono vascular. [Trabajo de Investigación para optar por el Título de Doctor] Universidad de Sevilla. España; 2017 [citado 06/03/2021]. Disponible en: https://idus.us.es/bitstream/handle/11441/63846/TESIS%20Javier%20%C1vila%20Medina.pdf?sequence=1

19. Ulyanova AV. Excitability of Vascular Smooth Muscle IntechOpen [Internet]. 2019 March [citado 06/03/2021]. Disponible en: https://www.intechopen.com/books/muscle-cells-recent-advances-and-future-perspectives/excitability-of-vascular-smooth-muscle

20. Qingsong L, Guiling Zhao, Xi F, Xiaohong P, Huayuan T, Hong W et al. IP3 receptors regulate vascular smooth muscle contractility and hypertension. JCI Insight [Internet]. 2016 Oct [citado 06/03/2021]; 1(17): e89402. Disponible en: https://insight.jci.org/articles/view/89402

Published

2021-06-12

How to Cite

1.
Rodríguez Reyes O, Noack T, Patejdl R, García Rodríguez RE, Cortés Camacho AA. Effect of Camphenol Plus on portal vein vascular smooth muscle in Wistar rats. Rev Ciencias Médicas [Internet]. 2021 Jun. 12 [cited 2025 Aug. 2];25(3):e5007. Available from: https://revcmpinar.sld.cu/index.php/publicaciones/article/view/5007

Issue

Section

ORIGINAL ARTICLES