The role of artificial intelligence in the diagnosis, monitoring, and management of retinal diseases: a review of the current literature

Authors

  • Nayaris Gómez Martínez Hospital General Docente "Abel Santamaría Cuadrado"
  • Nairovys Gomez Martinez
  • José Carlos Moreno-Domínguez
  • Ivette González-Fajardo

Keywords:

Artificial Intelligence, Age-Related Macular Degeneration, Biomarkers

Abstract

Introduction: retinal diseases, such as diabetic retinopathy and age-related macular degeneration, represent major causes of irreversible visual disability, generating increasing pressure on health systems.

Objective: to analyze recent evidence on the applications of artificial intelligence in the diagnosis, monitoring, and management of retinal pathologies.

Methods: a systematic literature review was conducted in international databases, using key terms related to artificial intelligence, deep learning, and retina. Articles published in recent years addressing clinical applications, algorithm validation, and implementation challenges were selected. The analysis focused on identifying trends, methodological contributions, and reported limitations.

Development: deep learning algorithms have achieved accuracy comparable to or exceeding that of human experts in retinal image classification tasks. Advances are highlighted in automated detection of diabetic retinopathy, quantification of biomarkers in optical coherence tomography, and prediction of progression in macular degeneration. Applications have also been explored in glaucoma and retinopathy of prematurity, expanding the spectrum of clinical utility. However, challenges remain regarding model generalization, explainability of algorithmic decisions, integration into healthcare workflows, and ethical and legal implications.

Conclusions: artificial intelligence constitutes a promising tool to optimize the diagnosis and monitoring of retinal diseases. Its ethical and effective integration can improve equity, accessibility, and quality of care, consolidating a new paradigm in contemporary ophthalmology.

Downloads

Download data is not yet available.

Author Biographies

Nayaris Gómez Martínez, Hospital General Docente "Abel Santamaría Cuadrado"

Oftalmóloga. Servicio de Glaucoma y Catarata. Centro Oftalmológico Pinar del Río

Nairovys Gomez Martinez

Licenciada en enfermeria . Master en Urgencias en Atencion Primaria de Salud . Profesor Asistente

References

1. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health [Internet]. 2017 [citado 18/11/2025]; 5(12):e1221-e1234. Disponible en: https://doi.org/10.1016/s2214-109x(17)30393-5

2. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol [Internet]. 2019 Feb [citado 18/11/2025]; 103(2):167-175. Disponible en: https://doi.org/10.1136/bjophthalmol-2018-313173

3. Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunović H. Artificial intelligence in retina. Prog Retin Eye Res [Internet]. 2018 Nov [citado 18/11/2025]; 67:1-29. Disponible en: https://doi.org/10.1016/j.preteyeres.2018.07.004

4. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med [Internet]. 2019 [citado 18/11/2025]; 25(1):24-29. Disponible en: https://doi.org/10.1038/s41591-018-0316-z

5. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med [Internet]. 2018 [citado 18/11/2025]; 24(9):1342-1350. Disponible en: https://doi.org/10.1038/s41591-018-0107-6

6. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA [Internet]. 2016 [citado 18/11/2025]; 316(22):2402-2410. Disponible en: https://doi.org/10.1001/jama.2016.17216

7. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA [Internet]. 2017 [citado 18/11/2025]; 318(22):2211-2223. Disponible en: https://doi.org/10.1001/jama.2017.18152

8. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med [Internet]. 2018 [citado 18/11/2025]; 1:39. Disponible en: https://doi.org/10.1038/s41746-018-0040-6

9. Bora A, Balasubramanian S, Babenko B, Virmani S, Venugopalan S, Mitani A, et al. Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit Health [Internet]. 2021 [citado 18/11/2025]; 3(1):e10-e19. Disponible en: https://doi.org/10.1016/s2589-7500(20)30250-8

10. Schlegl T, Waldstein SM, Bogunovic H, Endstraßer F, Sadeghipour A, Philip AM, et al. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology [Internet]. 2018 [citado 18/11/2025]; 125(4):549-558. Disponible en: https://doi.org/10.1016/j.ophtha.2017.10.031

11. Schmidt-Erfurth U, Waldstein SM, Klimscha S, Sadeghipour A, Hu X, Gerendas BS, et al. Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence. Invest Ophthalmol Vis Sci [Internet]. 2018 [citado 18/11/2025]; 59(8):3199-3208. Disponible en: https://doi.org/10.1167/iovs.18-24106

12. Yim J, Chopra R, Spitz T, Winkens J, Obika A, Kelly C, et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nat Med [Internet]. 2020 [citado 18/11/2025]; 26(6):892-899. Disponible en: https://doi.org/10.1038/s41591-020-0867-7

13. Peng Y, Dharssi S, Chen Q, Keenan TD, Agrón E, Wong WT, et al. DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs. Ophthalmology [Internet]. 2019 [citado 18/11/2025]; 126(4):565-575. Disponible en: https://doi.org/10.1016/j.ophtha.2018.11.015

14. Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology [Internet]. 2018 [citado 18/11/2025]; 125(8):1199-1206. Disponible en: https://doi.org/10.1016/j.ophtha.2018.01.023

15. Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, et al. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol [Internet]. 2018 [citado 18/11/2025]; 136(7):803-810. Disponible en: https://doi.org/10.1001/jamaophthalmol.2018.1934

16. Lee CS, Baughman DM, Lee AY. Deep learning is effective for the classification of OCT images of normal versus Age-related Macular Degeneration. Ophthalmol Retina [Internet]. 2017 [citado 18/11/2025]; 1(4):322-327. Disponible en: https://doi.org/10.1016/j.oret.2016.12.009

17. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng [Internet]. 2018 [citado 18/11/2025]; 2(3):158-164. Disponible en: https://doi.org/10.1038/s41551-018-0195-0

18. Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis. NPJ Digit Med [Internet]. 2018 [citado 18/11/2025]; 1:40. Disponible en: https://doi.org/10.1038/s41746-018-0048-y

19. Seyyed-Kalantari L, Zhang H, McDermott MBA, Chen IY, Ghassemi M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat Med [Internet]. 2021 [citado 18/11/2025]; 27(12):2176-2182. Disponible en: https://doi.org/10.1038/s41591-021-01595-0

20. Reyes M, Meier R, Pereira S, Silva CA, Dahlweid FM, von Tengg-Kobligk H, et al. On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities. Radiol Artif Intell [Internet]. 2020 [citado 18/11/2025]; 2(3):e190043. Disponible en: https://doi.org/10.1148/ryai.2020190043

21. Karthik A, Mynampati S. Explainable AI for Diabetic Retinopathy Detection Using Deep Learning with Attention Mechanisms and Fuzzy Logic-Based Interpretability [Internet]. 2025; arXiv preprint arXiv:2511.16294. Disponible en: https://arxiv.org/pdf/2511.16294

22. Xie Y, Nguyen QD, Hamzah H, Lim G, Bellemo V, Gunasekeran DV, et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digit Health [Internet]. 2020 [citado 18/11/2025]; 2(5):e240-e249. Disponible en: https://doi.org/10.1016/s2589-7500(20)30060-1

23. Price WN 2nd, Gerke S, Cohen IG. Potential Liability for Physicians Using Artificial Intelligence. JAMA [Internet]. 2019 [citado 18/11/2025]; 322(18):1765-1766. Disponible en: https://doi.org/10.1001/jama.2019.15064

Published

2025-12-31

How to Cite

1.
Gómez Martínez N, Gomez Martinez N, Moreno-Domínguez JC, González-Fajardo I. The role of artificial intelligence in the diagnosis, monitoring, and management of retinal diseases: a review of the current literature. Rev Ciencias Médicas [Internet]. 2025 Dec. 31 [cited 2026 Feb. 15];29(1):e6919. Available from: https://revcmpinar.sld.cu/index.php/publicaciones/article/view/6919

Issue

Section

REVIEW ARTICLES