Antioxidant and antimicrobial activity of mortiño (Vaccinium floribundum Kunth) against multi-resistant pathogenic bacteria
Keywords:
EXTRACTOS VEGETALES; FITOQUÍMICOS; PRODUCTOS CON ACCIÓN ANTIMICROBIANA; VACCINIUM., PLANT EXTRACTS; PHYTOCHEMICALS; PRODUCTS WITH ANTIMICROBIAL ACTION; VACCINIUM., EXTRATOS VEGETAIS; COMPOSTOS FITOQUÍMICOS; PRODUTOS COM AÇÃO ANTIMICROBIANA; VACCINIUM.Abstract
Introduction: bacterial resistance to antibiotics represents a critical global public health problem, prompting the search for new natural antimicrobial sources to combat multidrug-resistant bacteria.
Objective: to evaluate the antioxidant and antimicrobial activity of Vaccinium floribundum Kunth from Ecuador against Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes.
Methods: ethanol extracts were obtained by maceration (leaves) and Soxhlet extraction (fruit), yielding 11,18 % and 41,16 %, respectively. Qualitative phytochemical screening identified secondary metabolites. Antioxidant capacity was assessed using the DPPH assay. Antimicrobial activity was determined by agar diffusion method against L. monocytogenes, S. aureus, B. cereus, and E. coli.
Results: leaves contained flavonoids and tannins; fruits contained flavonoids, tannins, phenols, and diterpenes. Antioxidant capacity was 86,42 % (leaf) and 27,93 % (fruit). Leaf extract inhibition zones were: L. monocytogenes (20,67 mm), S. aureus (17,83 mm), B. cereus (18,50 mm), and E. coli (13,67 mm). Fruit extract showed lower activity: L. monocytogenes (14,00 mm), S. aureus (11,67 mm), B. cereus (11,50 mm), and E. coli (9,83 mm). The highest inhibition percentage compared to vancomycin was for S. aureus: 89 % (leaf) and 38,4 % (fruit).
Conclusions: the leaf extract demonstrated superior antioxidant and antimicrobial activity against both Gram-positive and Gram-negative bacteria, representing a potential natural source for the development of therapeutic agents against multidrug-resistant bacteria.
Downloads
References
1. Neira J, Espinoza C, Mejí C, Mesías J, Llerena G, Toapanta L, et al. Microorganismos multirresistentes en la unidad de cuidados intensivos del Hospital General del Norte Los Ceibos, Ecuador. Sociedad Farmacológica Clínica y Terapéutica [Internet]. 2021 [citado 20/10/2025]; 40(4): 517-519. Disponible en: https://doi.org/https://doi.org/10.5281/zenodo.5451417
2. Martens E, Demain AL. The antibiotic resistance crisis, with a focus on the United States. Journal of Antibiotics [Internet]. 2021 [citado 20/10/2025]; 70(5): 520–526. Disponible en: https://doi.org/10.1038/ja.2017.30
3. George S, Muhaj FF, Nguyen CD, Tyring SK. Part I Antimicrobial resistance: Bacterial pathogens of dermatologic significance and implications of rising resistance. Journal of the American Academy of Dermatology [Internet]. 2021 [citado 20 de octubre 2020/10/202525]; 86(6): 1189–1204. Disponible en: https://doi.org/10.1016/j.jaad.2021.11.066
4. Camacho-Silvas LA, Portillo-Gallo JH, Rivera-Cisneros AE, Sánchez-González JM, Franco-Santillán R, Duque-Rodríguez J, et al. Multidrug, extended and pan-resistance to antimicrobials at the North of México. Cirugia y Cirujanos (English Edition) [Internet]. 2021 [citado 20/10/2025]; 89(4): 426–434. Disponible en: https://doi.org/10.24875/CIRU.20000304
5. OMS. Resistencia a los antimicrobianos [Internet]. OMS; 2021 [citado 20/10/2025]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance
6. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet [Internet]. 2022 [citado 20 de octubre 20220/10/20255]; 399(10325): 629–655. Disponible en: https://doi.org/10.1016/S0140-6736(21)02724-0
7. OPS. Ecuador protege la salud humana al restringir el uso de antibióticos para el crecimiento de pollos [Internet]. OPS; 2023 [citado 20/10/2025]. Disponible en: https://www.paho.org/es/historias/ecuador-protege-salud-humana-al-restringir-uso-antibioticos-para-crecimiento-pollos
8. Ministerio de Salud Pública. Subsistema de vigilancia sive-alerta enfermedades transmitidas por agua y alimentos Ecuador, SE 22, 2021 [Internet]. Ecuador; 2023 [citado 20/10/2025]. p1–6. Disponible en: https://www.salud.gob.ec/wp-content/uploads/2021/06/GACETA-ETAS-SEM-22.pdf
9. Ross J, Larco D, Colon O, Coalson J, Gaus D, Taylor K, et al. Índices de resistencia a los antibióticos en aislamientos clínicos en Santo Domingo, Ecuador. Práctica Familiar Rural [Internet]. 2020 [citado 20/10/2025]; 5(1): 29–39. Disponible en: https://www.researchgate.net/publication/339588101_Indices_de_resistencia_a_los_antibioticos_en_aislamientos_clinicos_en_Santo_Domingo_Ecuador
10. OMS. Patógenos multirresistentes que son prioritarios para la OMS. [Internet]. OPS; 2021 [citado 20/10/2025]. Disponible en: https://www.paho.org/es/noticias/4-3-2021-patogenos-multirresistentes-que-son-prioritarios-para-oms
11. Soria C, Delgado M, Serrano ML, López I, Navarro JM, Gutiérrez J. Infections in patients colonized with carbapenem-resistant Gram-negative bacteria in a medium Spanish city. Rev Esp Quimioter [Internet]. 2021 [citado 20/10/2025]; 34(5): 450–458. Disponible en: https://doi.org/10.37201/req/021.2021
12. Manandhar S, Luitel S, Dahal RK. In Vitro Antimicrobial Activity of Some Medicinal Plants against Human Pathogenic Bacteria. Journal of Tropical Medicine [Internet]. 2019 [citado 20/10/2025]; 5. Disponible en: https://doi.org/10.1155/2019/1895340
13. Jiménez A, Mora K, Blandariz S, Cabrera C. Utilización de plantas medicinales en cuatro localidades de la zona sur de Manabí, Ecuador Use of medicinal plants in four localities of southern Manabí, Ecuador. Siembra [Internet]. 2021 [citado 20/10/2025]; 8(2): e3223. Disponible en: https://www.redalyc.org/journal/6538/653868341013/html/
14. Faye G, Birhanu T, Belete T. Survey and Antimicrobial Activity Study of Ethnomedicinal Plants in Selected Districts of North Shewa Zone, Oromia, Ethiopia. Infection and Drug Resistance [Internet]. 2021 [citado 20/10/2025]; 2021(14): 5511–5520. Disponible en: https://doi.org/10.2147/IDR.S333772
15. Maldonado C, Paniagua Zambrana N, Bussmann R, Zentero Ruiz F, Fuentes A. La importancia de las plantas medicinales, su taxonomía y la búsqueda de la cura a la enfermedad que causa el coronavirus (COVID-19). Ecología En Bolivia [Internet]. 2020 [citado 20/10/2025]; 55(1): 1–5. Disponible en: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1605-25282020000100001&lng=es&nrm=iso&tlng=es
16. Zamora C, Toro C. Actividad antibiótica del Eucalyptus globulus frente a bacterias Gram positivas: un artículo de revisión. Vallejian Medical Journal [Internet]. 2021 [citado 20/10/2025]; 10(2): 93–104. Disponible en: https://doi.org/10.18050/revistamedicavallejiana.v10i2.07
17. Azuero A, Jaramillo C, San Martin D, D’Armas H. Análisis del efecto antimicorbiano de doce plantas medicinales de uso ancestral en Ecuador. Ciencia Unemi [Internet]. 2016 [citado 20/10/2025]; 9(20): 11–18. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=5774769
18. Bayas F, Tigre A, Ramén R, Yanez D. Antimicrobial and Antioxidant Effect of Natural Extracts From Leaves, Root, Stem and Flowers of Baccharis Latifolia From Ecuador. International Journal of Current Pharmaceutical Research [Internet]. 2020 [citado 20/10/2025]; 12(2): 78–84. Disponible en: https://doi.org/10.22159/ijcpr.2020v12i2.37495
19. Llivisaca SA, León F, Manzano P, Ruales J, Naranjo J, Serrano L, et al. Mortiño (Vaccinium floribundum Kunth): An Underutilized Superplant from the Andes. Horticulturae [Internet]. 2020 [citado 20/10/2025]; 8(5): 358. Disponible en: https://doi.org/10.3390/horticulturae8050358
20. Garzón G, Soto C, López M, Riedl K, Browmiller C, Howard L. Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon [Internet]. 2020 [citado 20/10/2025]; 6(5): e03845. Disponible en: https://doi.org/10.1016/j.heliyon.2020.e03845
21. Raghu A, Velayudhannair K. Phytochemical Analysis and Antibacterial Potential of Stevia rebaudiana (Bertoni, 1899) Leaf Extracts against Aeromonas Species: Influence of Extraction Methods and Solvents in Aquaculture Applications. Journal of Pure and Applied Microbiology [Internet]. 2020 [citado 20/10/2025]; 17(4): 2352–2366. Disponible en: https://doi.org/10.22207/JPAM.17.4.31
22. Vieira S, Ferreira H, Neves N. Antioxidant and anti-inflammatory activities of cytocompatible salvia officinalis extracts: A comparison between traditional and soxhlet extraction. Antioxidants [Internet]. 2020 [citado 20/10/2025]; 9(11): 1157. Disponible en: https://doi.org/10.3390/antiox9111157
23. Abubakar A, Haque M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. Journal of Pharmacy and Bioallied Sciences [Internet]. 2020 [citado 20/10/2025]; 12(1): 1–10. Disponible en: https://doi.org/10.4103/jpbs.JPBS_175_19
24. Pujol A, Tamargo B, Salas E, Calzadilla C, Acevedo R, Sierra G. Tamizaje fitoquímico de extractos obtenidos de la planta Sapindus saponaria L que crece en Cuba. Bionatura [Internet]. 2020 [citado 20/10/2025]; 5(3): 1209-1214. Disponible en: https://www.researchgate.net/publication/343676970_Tamizaje_fitoquimico_de_extractos_obtenidos_de_la_planta_Sapindus_saponaria_L_que_crece_en_Cuba
25. Ginting C, Lister N, Girsang E, Riastawati D, Kusuma H, Widowati W. Antioxidant Activities of Ficus elastica Leaves Ethanol Extract and Its Compounds. Molecular and Cellular Biomedical Sciences [Internet]. 2020 [citado 20/10/2025]; 4(1): 27. Disponible en: https://doi.org/10.21705/mcbs.v4i1.86
26. Carrill C, Díaz R. Actividad antimicrobiana de extractos hidroalcohólicos de hojas de dos variedades de Mangifera indica. Ciencia Unemi [Internet]. 2020 [citado 20/10/2025]; 13(32): 69–77. Disponible en: https://www.redalyc.org/journal/5826/582661898007/html/
27. Gomes J, Cefali L, Ataide J, Santini A, Souto EB, Mazzola P. Effect of nanoencapsulation of blueberry (Vaccinium myrtillus): A green source of flavonoids with antioxidant and photoprotective properties. Sustainable Chemistry and Pharmacy [Internet]. 2020 [citado 20/10/2025]; 23: 100515. Disponible en: https://doi.org/10.1016/j.scp.2021.100515
28. Koshovyi O, Granica S, Piwowarski JP, Stremoukhov O, Kostenko Y, Kravchenko G, et al. Highbush blueberry (Vaccinium corymbosum l.) leaves extract and its modified arginine preparation for the management of metabolic syndrome chemical analysis and bioactivity in rat model. Nutrients [Internet]. 2021 [citado 20 de octubre 220/10/2025025]; 13(8): 2870. Disponible en: https://doi.org/10.3390/nu13082870
29. Frías ME, Rosales M. Effect of extraction conditions on the concentration of phenolic compounds in Mexican oregano (Lippia graveolens Kunth) residues. Revista Chapingo, Serie Ciencias Forestales y Del Ambiente [Internet]. 2021 [citado 20/10/2025]; 27(3): 367–381. Disponible en: https://doi.org/10.5154/R.RCHSCFA.2020.10.066
30. Xu J, Yang H, Nie C, Wang T, Qin X, Yang J, et al. Comprehensive phytochemical analysis of lingonberry (Vaccinium vitis-idaea L.) from different regions of China and their potential antioxidant and antiproliferative activities. RSC Advances [Internet]. 2023 [citado 20/10/2025]; 13(42): 29438–29449. Disponible en: https://doi.org/10.1039/d3ra05698h
31. Ștefănescu R, Laczkó-Zöld E, Ősz BE, Vari CE. An Updated Systematic Review of Vaccinium myrtillus Leaves: Phytochemistry and Pharmacology. Pharmaceutics [Internet]. 2023 [citado 20/10/2025]; 15(1): 16. Disponible en: https://doi.org/10.3390/pharmaceutics15010016
32. Llivisaca S, Manzano P, Ruales J, Flores J, Mendoza J, Peralta E, et al. Chemical, antimicrobial, and molecular characterization of mortiño (Vaccinium floribundum Kunth) fruits and leaves. Food Science and Nutrition [Internet]. 2018 [citado 20/10/2025]; 6(4): 934–942. Disponible en: https://doi.org/10.1002/fsn3.638
33. Alarcón KS, Armijos DS, García M, Iturralde G, Jaramilo T, Granda MG, et al. Wild Andean blackberry (Rubus glaucus Benth) and Andean blueberry (Vaccinium floribundum Kunth) from the Highlands of Ecuador: Nutritional composition and protective effect on human dermal fibroblasts against cytotoxic oxidative damage. Journal of Berry Research [Internet]. 2018 [citado 20/10/2025]; 8(3): 223–236. Disponible en: https://doi.org/10.3233/JBR-180316
34. Cerrato A, Piovesana S, Aita SE, Cavaliere C, Felletti S, Laganà A, et al. Detailed investigation of the composition and transformations of phenolic compounds in fresh and fermented Vaccinium floribundum berry extracts by high-resolution mass spectrometry and bioinformatics. Phytochemical Analysis [Internet]. 2022 [citado 20/10/2025]; 33(4): 507–516. Disponible en: https://doi.org/10.1002/pca.3105
35. Ștefănescu B, Călinoiu L, Ranga F, Fetea F, Mocan A, Vodnar DC, et al. The chemical and biological profiles of leaves from commercial blueberry varieties. Plants [Internet]. 2022 [citado 20/10/2025]; 9(9): 1193. Disponible en: https://doi.org/10.3390/plants9091193
36. Bujor O, Ginies C, Popa V, Dufour C. Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L. leaf, stem and fruit at different harvest periods. Food Chemistry [Internet]. 2018 [citado 20/10/2025]; 252: 356–365. Disponible en: https://doi.org/10.1016/j.foodchem.2018.01.052
37. Ștefănescu B, Călinoiu L, Ranga F, Fetea F, Mocan A, Vodnar DC, et al. Chemical composition and biological activities of the nord-west romanian wild bilberry (Vaccinium myrtillus l.) and lingonberry (vaccinium vitis-idaea l.) leaves. Antioxidants [Internet]. 2020 [citado 20/10/2025]; 9(6): 495. Disponible en: https://doi.org/10.3390/antiox9060495
38. Bunea A, Ruginǎ DO, Pintea AM, Sconţa Z, Bunea CI, Socaciu C. Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca [Internet]. 2011 [citado 20/10/2025]; 39(2): 70–76. Disponible en: https://doi.org/10.15835/nbha3926265
39. Yu R, Chen L, Xin X. Comparative assessment of chemical compositions, antioxidant and antimicrobial activity in ten berries grown in China. Flavour and Fragrance Journal [Internet]. 2020 [citado 20/10/2025]; 35(2): 197–208. Disponible en: https://doi.org/10.1002/ffj.3553
40. Brzezowska J, Martinez AJ, Silvan JM, Łysiak GP, Wojdyło A, Lech K, et al. Matrix changes driven by cultivar diversity, inulin addition and drying techniques - shaping the antioxidant, antimicrobial and anti-inflammatory properties of blueberry powders. Innovative Food Science and Emerging Technologies [Internet]. 2020 [citado 20/10/2025]; 89: 103481. Disponible en: https://doi.org/10.1016/j.ifset.2023.103481
41. Georgescu C, Frum A, Virche LI, Sumacheva A, Shamtsyan M, Gligor FG, et al. Geographic Variability of Berry Phytochemicals with Antioxidant and Antimicrobial Properties. Molecules[Internet]. 2020 [citado 20/10/2025]; 27(15): 4986. Disponible en: https://doi.org/10.3390/molecules27154986
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Edith Johanna Guamán Poaquiza

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who have publications with this journal agree to the following terms: Authors will retain their copyrights and grant the journal the right of first publication of their work, which will be publication of their work, which will be simultaneously subject to the Creative Commons Attribution License (CC-BY-NC 4.0) that allows third parties to share the work as long as its author and first publication in this journal are indicated.
Authors may adopt other non-exclusive license agreements for distribution of the published version of the work (e.g.: deposit it in an institutional telematic archive or publish it in a volume). Likewise, and according to the recommendations of the Medical Sciences Editorial (ECIMED), authors must declare in each article their contribution according to the CRediT taxonomy (contributor roles). This taxonomy includes 14 roles, which can be used to represent the tasks typically performed by contributors in scientific academic production. It should be consulted in monograph) whenever initial publication in this journal is indicated. Authors are allowed and encouraged to disseminate their work through the Internet (e.g., in institutional telematic archives or on their web page) before and during the submission process, which may produce interesting exchanges and increase citations of the published work. (See The effect of open access). https://casrai.org/credit/
