Study and selection of artificial intelligence techniques for the diagnosis of diseases
Keywords:
DIAGNOSIS, ARTIFICIAL INTELLIGENCE, CERTAINTYAbstract
Introduction: the process of diseases diagnosis is complex, given that medical data and information can often have uncertainty and require being treated with artificial intelligence (AI) techniques in order to assist patients’ diseases with greater assurance supporting the decision making.
Objective: to compare artificial intelligence techniques that are frequently used for the diagnosis of diseases, when the data stored are kept on the behavior of diseases that frequently affect a population in question.
Method: a research supported by the theory of discrete multicriteria decision support process, which is useful for the decision making, particularly in relation to the artificial intelligence techniques that best suits to perform the diagnosis of diseases with greater certainty.
Results: Discrete Multicriteria Decision Making Theory is presented for decision making in relation to the artificial intelligence techniques that best suit the diagnosis of diseases with greater certainty.
Conclusions: it was possible to identify the artificial intelligence techniques that well-suited the diagnosis of diseases with greater certainty, using Discrete Multicriteria Decision-making Theory, making possible the assessment of symptoms, signs and the risk factors presented in patients.
DIAGNOSIS; ARTIFICIAL INTELLIGENCE; CERTAINTY
Downloads
References
1. Lugo S, Maldonado G, Murata Ch. Inteligencia artificial para asistir el diagnóstico clínico en medicina. Revista Alergia México 2014 [Internet];61:110-120. Available from: http://revistaalergia.mx/ojs/index.php/ram/article/download/33/46.
2. Bernal EA. Sistema prototipo de entrenamiento pediatra para el proceso de adaptación neonatal. Tesis de Maestría en Ingeniería de Sistemas y Computación, Línea de investigación: Ingeniería del Software, Sistemas Inteligentes, ÁREA: Sistemas Inteligentes 2014 [Internet]. Disponible en: http://slideplayer.es/slide/94359/.
3. Atkov OY, Gorokhova SG, Sboev AG, Generozov EV, Muraseyeva EV. Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters. J Cardiol 2012 [Internet]; 59(2):190- 194. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22218324.
4. Monsalve Torra AE. Sistema de ayuda a la decisión clínica en enfermedades de diagnóstico complejo. Tesis en opción al grado científico de Doctor en Ciencias Informáticas. Departamento de Tecnología, Informática y Computación. Escuela Politecnica Superior de Alicante, España 2017 [Internet]. Available from: https://rua.ua.es/dspace/bitstream/10045/65334/1/tesis_monsalve_torra.pdf.
5. Ochoa CA, Mena LJ, Felix VG, García V. Diagnóstico para Síndrome de Asperger utilizando una aplicación inteligente a partir del razonamiento basado en casos; 2015. Revista Electrónica de Divulgación de la Investigación 2015 [Internet] Vol. 10. Available from: https://www.researchgate.net/publication/291698853_Diagnostico_para_Sindrome_de_Asperger_utilizando_una_aplicacion_inteligente_a_partir_del_razonamiento_basado_en_casos.
6. Fernández Galán S. Redes Bayesianas temporales: aplicaciones médicas e industriales. Tesis doctoral. Universidad Nacional de Educación a Distancia [Internet]. Madrid 2002. Disponible en: http://www.cisiad.uned.es/tesis/tesis-seve.pdf.
7. Seixas JM, Faria J, Souza JBO, Vieira AFM, Kritski A et al. Artificial neural network models to support the diagnosis of pleural tuberculosis in adult patients. Int J Tuberc Lung Dis 2013[Internet] [cited 2013 Nov 18];17(5):682-686. Available from: http://www.ingentaconnect.com/content/iuatld/ijtld/2013/00000017/00000005/art00021?token=00581a1cffd6a264d37e41225f40384d576b4628486b253e2c49576b3427656c3c6a333f2566e4ed81d7b599
8. Febles O. Modelo para el desarrollo de aplicaciones compuestas basadas en arquitecturas orientadas a servicios, Tesis en opción al grado científico de Doctor en Ciencias Técnicas, Especialidad – Informática. Universidad de las Ciencias Informáticas [Internet]. Ciudad de la Habana 2012. Disponible en: http://tesis.cujae.edu.cu/bitstream/handle/123456789/891/Tesis283.pdf?sequence=1&isAllowed=y.
10. Laws RJ, Kesler DC. A Bayesian network approach for selecting translocation sites for endangered island birds, 2012. Biological Conservation 2012 [Internet]; 155: 178-185. Disponible en: https://www.sciencedirect.com/science/article/pii/S0006320712002650?via%3Dihub.
11. Barba-Romero S. Evaluación multicriterio de proyectos, en Martínez, 1994. E. (Ed.), Ciencia, Tecnología y Desarrollo: Interrelaciones Teóricas y Metodológicas, (Ed. Nueva Sociedad, Caracas, pp. 455-507).
12. Martínez E, Escudey M. Evaluación y Decisión Multiciterio. Reflexiones y Experiencias, 1998. Editorial Universidad de Santiago/UNESCO, Santiago de Chile.
13. Leyva M. Modelo de ayuda a la toma de decisiones basado en Mapas Cognitivos Difusos. Tesis presentada en opción al Grado Científico de Doctor en Ciencias Técnicas, 2013. Available from: https://www.researchgate.net/profile/Maikel_Leyva-Vazquez/publication/263221297_MODELO_DE_AYUDA_A_LA_TOMA_DE_DECISIONES_BASADO_EN_MAPAS_COGNITIVOS_DIFUSOS/links/0046353a2e6a8a1e8d000000/MODELO-DE-AYUDA-A-LA-TOMA-DE-DECISIONES-BASADO-EN-MAPAS-COGNITIVOS-DIFUSOS.pdf.

Published
How to Cite
Issue
Section
License
Authors who have publications with this journal agree to the following terms: Authors will retain their copyrights and grant the journal the right of first publication of their work, which will be publication of their work, which will be simultaneously subject to the Creative Commons Attribution License (CC-BY-NC 4.0) that allows third parties to share the work as long as its author and first publication in this journal are indicated.
Authors may adopt other non-exclusive license agreements for distribution of the published version of the work (e.g.: deposit it in an institutional telematic archive or publish it in a volume). Likewise, and according to the recommendations of the Medical Sciences Editorial (ECIMED), authors must declare in each article their contribution according to the CRediT taxonomy (contributor roles). This taxonomy includes 14 roles, which can be used to represent the tasks typically performed by contributors in scientific academic production. It should be consulted in monograph) whenever initial publication in this journal is indicated. Authors are allowed and encouraged to disseminate their work through the Internet (e.g., in institutional telematic archives or on their web page) before and during the submission process, which may produce interesting exchanges and increase citations of the published work. (See The effect of open access). https://casrai.org/credit/