Study of uncertainties in radiotherapy to prostate cancer patients with cone-beam computed tomography on a day-to day basis
Keywords:
PROSTATIC NEOPLASMS, ADENOCARCINOMA, RADIOTHERAPY SETUP ERRORS, TOMOGRAPHY, X-RAY COMPUTED, PATIENT.Abstract
Introduction: radiations with therapeutic aims have revolutionized medicine, particularly radiation technologies for the treatment of cancer.
Objective: to determine the margin of errors of the configuration and the movement of organs in determining the position of Clinical Target Volume using kilovoltage cone-beam computed tomography in the treatment of prostate cancer, as well as to quantify the movement of organs during the planned therapy of prostate obtained by a margin for the prostate.
Methods: an experimental research, the radio-therapeutic method on a day-to day basis was taken on. Patients registered from January to April 2017 on Cancer Radiotherapy from the University Hospital of Verona University in Italy, with prostate adenocarcinoma stages T1 to T4; and who were treated using volumetric modulated arch therapy.
Results: making use of Van Herk’s formula to position the margin of prostate, it was observed that in the craniocaudal and lateral direction there are small scatterings, and in the anteroposterior direction the degree of scattering is greater, being related to rectal filling, bladder movement and peristalsis of the patient. Finding the required margins for the prostate between CTV and PTV would be in the craniocaudal direction 3,3 mm, lateral 3,7 mm and anteroposterior 4,4 mm.
Conclusions: cone-beam computed tomography is a precise tool to guide the images; it provides an equivalent approach of correction of the configuration for prostate cancer patients.
Downloads
References
1. Muñoz Á. Personalidades históricas de la radioterapia. Revista Medicina [Internet]. 2021 [citado 28/8/2021]; 43(1): 11-17. Disponible en: http://revistamedicina.net/ojsanm/index.php/Medicina/article/view/1580
2. Raaymakers B W, Jürgenliemk-Schulz I M, Bol G H, Glitzner M, Kotte A N T J, Van Asselen B, et al. First patients treated with a 1.5 T MRI-Linac: Clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol [Internet]. 2017 [citado 28/8/2021]; 62(23): 41-50. Disponible en: https://doi.org/10.1088/1361-6560/aa9517
3. Pouget JP, Georgakilas AG, Ravanat JL. Targeted and off-target (bystander and abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis. Antioxid Redox Signal [Internet]. 2018 [citado 28/8/2021]; 29(15): 1447-1487. Disponible en: http://doi.org/10.1089/ars.2017.7267
4. Van Herk M, Kooy HM. Automatic three-dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching. Med. Phys [Internet]. 1994 [citado 28/8/2021]; 21(7): 1163–1178. Disponible en: https://doi.org/10.1118/1.597344
5. Zhong R, Song Y, Yang Y, Wang X, Li S, Zhou J, et al. Analysis of which local set-up errors can be covered by a 5-mm margin for cone beam CT-guided radiotherapy for nasopharyngeal carcinoma. Br J Radiol [Internet]. 2018 [citado 28/8/2021]; 91(1088): 20160849. Disponible en: http://doi.org/10.1259/bjr.20160849
6. Meier V, Staudinger C, Radonic S, Besserer J, Schneider U, Walsh L, et al. Reducing margins for abdominopelvic tumours in dogs: Impact on dose‐coverage and normal tissue complication probability. Vet Comp Oncol [Internet]. 2021 [citado 28/8/2021]; 19(2): 266-274. Disponible en: http://doi.org/10.1111/vco.12671
7. Castro P, Roch M, Zapatero A, Buchser D, Garayoa J, Anson C, et al. Multicomponent Assessment of the Geometrical Uncertainty and Consequent Margins in Prostate Cancer Radiotherapy Treatment Using Fiducial Markers. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology [Internet]. 2018 [citado 28/8/2021]; 7(4): 503-521. Disponible en: https://doi.org/10.4236/ijmpcero.2018.74043
8. García-Mollá R, Sánchez Rubio P, Bonaque Alandí J, Carrasco Herrera MA, Lliso Valverde F. Implementación y uso clínico de la radioterapia adaptativa. Informe del grupo de trabajo de radioterapia adaptativa de la Sociedad Española de Física Médica (SEFM). Rev Fis Med [Internet]. 2021 [citado 28/8/2021]; 22(1): 123-66. Disponible en: https://doi.org/10.37004/sefm/2021.22.1.004
9. Yock AD, Mohan R, Flampouri S, Bosch W, Taylor PA, Gladstone D, et al. Robustness analysis for external beam radiation therapy treatment plans: describing uncertainty scenarios and reporting their dosimetric consequences. Pract Radiat Oncol [Internet] 2019 [citado 28/8/2021]; 9(4): 200-207. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30562614/
10. Basu T, Goldsworthy S, Gkoutos GV. A Sentence Classification Framework to Identify Geometric Errors in Radiation Therapy from Relevant Literature. Information [Internet]. 2021 [citado 28/8/2021]; 12(4): 139. Disponible en: https://doi.org/10.3390/info12040139
11. Kershaw L, Van Zadelhoff L, Heemsbergen W, Pos F, Van Herk M. Image guided radiation therapy strategies for pelvic lymph node irradiation in high-risk prostate cancer: motion and margins. Int J Radiat Oncol Biol Phys [Internet]. 2018 [citado 28/8/2021]; 100(1): 68-77. Disponible en: http://doi.org/10.1016/j.ijrobp.2017.08.044
12. 13. Banos‐Capilla MC, Lago-Martin JD, Gil P, Larrea LM. Sensitivity and specificity analysis of 2D small field measurement array: Patient‐specific quality assurance of small target treatments and spatially fractionated radiotherapy. J Appl Clin Med Phys [Internet]. 2021 [citado 28/8/2021]; 22(10): 104-119. Disponible en: http://doi.org/10.1002/acm2.13402
13. Guzmán-Rivera JV, Alvira-Guauña DC. Efectos secundarios de las ter¬apias oncológicas en pacientes con cáncer de cérvix. Rev. cienc. cui¬dad [Internet]. 2021 [citado 28/8/2021]; 18(2): 55-68. Disponible en: https://doi.org/10.22463/17949831.2842
14. Thaper D, Oinam AS, Kamal R, Singh G, Handa B, Kumar V, et al. Interplay effect modeling in stereotactic body radiotherapy treatment of liver cancer using volumetric modulated arc therapy. Phys Eng Sci Med [Internet]. 2021 [citado 28/8/2021]; 44(1): 123-134. Disponible en: http://doi.org/10.1007/s13246-020-00961-5
15. Sanchez Forero RA, Olejua Villa PA, Rocha Morales A, Murillo R. Evaluación de Errores de Posicionamiento en los 6 Grados de Libertad en Pacientes con Cáncer de próstata tratados con radioterapia. Urol Colomb [Internet]. 2021 [citado 28/8/2021]; 30(1): 23–33. Disponible en: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0040-1714726
16. Dai X, Lei Y, Wang T, Dhabaan AH, McDonald M, Beitler JJ, et al. Synthetic MRI-aided Head-and-Neck Organs-at-Risk Auto-Delineation for CBCT-guided Adaptive Radiotherapy. arXiv [Internet]. 2020 [citado 28/8/2021]; 1. Disponible en: https://arxiv.org/pdf/2010.04275.pdf
17. Pokhrel D, Sanford L, Halfman M, Molloy J. Potential reduction of lung dose via VMAT with jaw tracking in the treatment of single‐isocenter/two‐lesion lung SBRT. J Appl Clin Med Phys [Internet]. 2019 [citado 28/8/2021]; 20(5): 55-63. Disponible en: http://doi.org/10.1002/acm2.12580
18. Patni N, Burela N, Pasricha R, Goyal J, Soni TP, Kumar TS, et al. Assessment of three-dimensional setup errors in image-guided pelvic radiotherapy for uterine and cervical cancer using kilovoltage cone-beam computed tomography and its effect on planning target volume margins. J Cancer Res Ther [Internet]. 2017 [citado 28/8/2021]; 13(1): 131-136. Disponible en: http://doi.org/10.4103/0973-1482.199451
19. Lee DS, Lee YK, Kang YM, Won YG, Park S, Kim Y, et al. Assessment of planning reproducibility in three-dimensional field-in-field radiotherapy technique for breast cancer: impact of surgery-simulation interval. Sci Rep [Internet]. 2021 [citado 28/8/2021]; 11(1): 1556. Disponible en: http://doi.org/10.1038/s41598-020-78666-8
20. Chen Z, Yang Z, Wang J, Hu W. Dosimetric impact of different bladder and rectum filling during prostate cancer radiotherapy. Radiat Oncol [Internet]. 2016 [citado 28/8/2021]; 11(103). Disponible en: https://doi.org//10.1186/s13014-016-0681-z
Downloads
Published
How to Cite
Issue
Section
License
Authors who have publications with this journal agree to the following terms: Authors will retain their copyrights and grant the journal the right of first publication of their work, which will be publication of their work, which will be simultaneously subject to the Creative Commons Attribution License (CC-BY-NC 4.0) that allows third parties to share the work as long as its author and first publication in this journal are indicated.
Authors may adopt other non-exclusive license agreements for distribution of the published version of the work (e.g.: deposit it in an institutional telematic archive or publish it in a volume). Likewise, and according to the recommendations of the Medical Sciences Editorial (ECIMED), authors must declare in each article their contribution according to the CRediT taxonomy (contributor roles). This taxonomy includes 14 roles, which can be used to represent the tasks typically performed by contributors in scientific academic production. It should be consulted in monograph) whenever initial publication in this journal is indicated. Authors are allowed and encouraged to disseminate their work through the Internet (e.g., in institutional telematic archives or on their web page) before and during the submission process, which may produce interesting exchanges and increase citations of the published work. (See The effect of open access). https://casrai.org/credit/