Antimicrobial resistance profile of the main microorganisms subject to surveillance in Ecuador

Authors

Keywords:

INFECTIOUS DISEASE INCUBATION PERIOD RESISTANCE, BACTERIA, ANTIBIOTICS, ANTIMICROBIAL.

Abstract

Introduction: Infectious diseases are one of the most important causes of death in the world, with the introduction of antibiotics being one of the most important interventions for their control and increasing the life expectancy of the population by several years. However, a growing threat is undermining the effectiveness of these drugs: “Bacterial resistance to antibiotics”.

Objective: to describe the antimicrobial resistance profile of the main microorganisms subject to surveillance in Ecuador.

Methods: the search and selection of information was carried out on several open access platforms: Digital Library (SciELO), Search Engine (Google Scholar), Database (Science Direct, Scopus), Search Engine (PubMed), as well as texts from specialized medical literature. The following were included:articles with access to their abstract or full content, articles published in high-impact scientific journals, written in Spanish and English.

Development: The microorganisms subject to antimicrobial resistance (AMR) surveillance that have been reported in the highest percentage are: Escherichia coli (>50%), followed by Klebsiella pneumoniae, Staphylococcus aureus and Pseudomonas aeruginosa. The main resistance genes are: CTX-M (BLEE, most common and of greatest importance in public health), followed by NDM, VIM, IMP, KPC, VAN-B and MCR-1.

Conclusions: Antimicrobial resistance represents a serious public health problem, from antibiotic resistance in bacteria responsible for common infections to resistance to last-resort antibiotics.

 

Downloads

Download data is not yet available.

Author Biography

Gerardo José Sánchez-Velásquez, Hospital General Quevedo IESS. Universidad Regional Autónoma de los Andes.

Especialista de Primer Grado en Estomatología General Integral. Diplomado en Periodoncia Clínica. Profesor Auxiliar.

References

1. Flores J. Farmacología humana. 6.a ed. ELSEVIER MASSON; 2014.

2. Lorenzo P, Moreno A, Leza JC. Velázquez Farmacología Básica y Clínica. 19.a ed. Panamericana; 2017.

3. Barber DS. O’Neill Review into Antibiotic Resistance [Internet] House Commons Libr; 2017 [citado 20/10/2023]. Disponible en: https://researchbriefings.files.parliament.uk/documents/CDP-2017-0074/CDP-2017-0074.pdf

4. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet [Internet]. febrero de 2022 [citado 20/10/2023]; 399(10325): 629-55. Disponible en: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02724-0/fulltext

5. La resistencia a los antimicrobianos y el Marco de Cooperación de las Naciones Unidas para el Desarrollo Sostenible: orientaciones para los equipos de las Naciones Unidas en los países [Internet]. Naciones Unidas; 2021 [citado 20/10/2023]. Disponible en: https://www.woah.org/app/uploads/2021/10/unsdcf-amr-guidance-web-final-es.pdf

6. Majumder MAA, Rahman S, Cohall D, Bharatha A, Singh K, Haque M, et al. Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infect Drug Resist [Internet]. 29 de diciembre de 2020 [citado 20/10/2023]; 13: 4713-38. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33402841/

7. WHO. Antimicrobial resistance: global report on surveillance [Internet]. WHO; 2014 [citado 20/10/2023]. Disponible en: https://www.who.int/publications-detail-redirect/9789241564748

8. Scapellato P, Cornistein W. La pandemia oculta: resistencia a antimicrobianos. Ley y desafíos. ASEI [Internet]. 6 de diciembre de 2022 [citado 20/10/2023]; 30(110). Disponible en: https://revista.infectologia.info/index.php/revista/article/view/147

9. Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health [Internet]. 1 de diciembre de 2021 [citado 20/10/2023]; 14(12): 1750-66. Disponible en: https://www.sciencedirect.com/science/article/pii/S1876034121003403

10. Dever LA, Dermody TS. Mechanisms of bacterial resistance to antibiotics. Arch Intern Med [Internet]. mayo de 1991 [citado 20/10/2023]; 151(5): 886-95. Disponible en: https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/615030

11. BENNETT JE, DOLIN R, BLASER MJ. ENFERMEDADES INFECCIOSAS Principios y práctica. Octava. España: ELSEVIER; 2015.

12. Organización Panamericana de la Salud. Tratamiento de las enfermedades infecciosas. OPS. 8.a ed. Washington, D.C; 2019.

13. Nikaido H. Antibiotic Resistance Caused by Gram‐Negative Multidrug Efflux Pumps. Clin Infect Dis Off Publ Infect Dis Soc Am [Internet]. 1 de septiembre de 1998 [citado 20/11/2023]; 27 (Suppl 1): S32-41. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9710669/

14. Queenan A, Bush K. Carbapenemases: The Versatile Beta-Lactamases. Clin Microbiol Rev [Internet]. 1 de agosto de 2007 [citado 20/11/2023]; 20(3): 440-58. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17630334/

15. Livermore DM. Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare? Clin Infect Dis [Internet]. 1 de marzo de 2002 [citado 20/11/2023]; 34(5): 634-40. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11823954/

16. Cardoso MRA, Nascimento-Carvalho CM, Ferrero F, Berezin EN, Ruvinsky R, Camargos PAM, et al. Penicillin-resistant pneumococcus and risk of treatment failure in pneumonia. Arch Dis Child [Internet]. marzo de 2008 [citado 20/11/2023]; 93(3): 221-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/17848490/

17. Cornaglia G, Russell K, Satta G, Fontana R. Relative importances of outer membrane permeability and group 1 beta-lactamase as determinants of meropenem and imipenem activities against Enterobacter cloacae. Antimicrob Agents Chemother [Internet]. febrero de 1995 [citado 20/11/2023]; 39(2):350-5. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC162541/

18. Valentí PF, Rozman C. MEDICINA INTERNA FARRERAS ROZMAN. 17.a ed. España: ELSEVIER; 2012.

19. Patel R. Biofilms and antimicrobial resistance. Clin Orthop [Internet]. agosto de 2005 [citado 20/11/2023]; (437):41-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/16056024/

20. Global AMC data. Time series of resistance to antibacterials (2017-2020) [Internet]. WHO; 2020 [citado 24/01/2024]. Disponible en: https://worldhealthorg.shinyapps.io/glass-dashboard/_w_97a18d55/#!/amr

21. WHO GLASS Dashboard. Country, territory or area profiles [Internet]. WHO; 2022 [citado 24/01/2024]. Disponible en: https://worldhealthorg.shinyapps.io/glass-dashboard/_w_97a18d55/_w_0e03af96/_w_f67f22fa/#!/cta-profiles

22. REPORTE DE DATOS DE RESISTENCIA A LOS ANTIMICROBIANOS EN ECUADOR 2014-2018 [Internet]. INSTITUTO NACIONAL DE INVESTIGACIÓN EN SALUD PÚBLICA[Internet]; 2018[citado 24/01/2024]. Disponible en: https://www.salud.gob.ec/wp-content/uploads/2019/08/gaceta_ram2018.pdf

23. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022 [Internet]. WHO; 2022 [citado [citado 24/01/2024].]. Disponible en: https://iris.who.int/bitstream/handle/10665/364996/9789240062702-eng.pdf?sequence=1

24. Solís MB, Romo S, Granja M, Sarasti JJ, Miño AP, Zurita J. Infección comunitaria del tracto urinario por Escherichia coli en la era de resistencia antibiótica en Ecuador. Metro Cienc [Internet]. 31 de marzo de 2022 [citado [citado 24/01/2024].]; 30(1):37-48. Disponible en: https://revistametrociencia.com.ec/index.php/revista/article/view/321

25. Darwin DTT, Gualpa-Jácome G, Echeverría-Llumipanta I. Indicadores de resistencia antimicrobiana en la unidad de cuidados intensivos en un hospital de Quito, Ecuador. INSPILIP [Internet]. 1 de julio de 2021 [citado [citado 24/01/2024].]; 5(2): 1-7. Disponible en: https://www.researchgate.net/publication/361619956_Indicadores_de_resistencia_antimicrobiana_en_la_unidad_de_cuidados_intensivos_en_un_hospital_de_Quito_Ecuador

26. Álvarez-Lerma F, Olaechea-Astigarraga P, Gimeno R, Catalan M, Nuvials X, Gracia-Arnilla MP, et al. Changes of resistance rates in Pseudomonas aeruginosa strains are unrelated to antimicrobial consumption in ICU populations with invasive device-related infection. Med Intensiva [Internet]. 1 de octubre de 2020 [citado [citado 24/01/2024].]; 44(7): 399-408. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31787354/

27. WHO. Antimicrobial resistance [Internet]. WHO; 2017 [citado 07/02/2024]. Disponible en: https://www.who.int/news-room/questions-and-answers/item/antimicrobial-resistance

28. Our Work | Antimicrobial resistance [Internet]. WHO; s/a [citado 07/02/2024]. Disponible en: https://www.who.int/our-work/antimicrobial-resistance

29. CDC. Centers for Disease Control and Prevention. Antibiotic Resistance Threatens Everyone [Internet]. CDC; 2023 [citado 07/02/2024]. Disponible en: https://www.cdc.gov/drugresistance/index.html

30. The WHO AWaRe (Access, Watch, Reserve) antibiotic book [Internet]. WHO; 2022 [citado 07/02/2024]. Disponible en: https://www.who.int/publications-detail-redirect/9789240062382

Published

2024-11-29

How to Cite

1.
Sánchez-Velásquez GJ, Valbuena-Salazar GA, España-Aguilera GDL. Antimicrobial resistance profile of the main microorganisms subject to surveillance in Ecuador. Rev Ciencias Médicas [Internet]. 2024 Nov. 29 [cited 2025 Aug. 21];28(2):e6583. Available from: https://revcmpinar.sld.cu/index.php/publicaciones/article/view/6583

Issue

Section

REVIEW ARTICLES