Therapeutic targeting of Cathepsin B for the development of drugs for breast cancer
Keywords:
BREAST NEOPLASMS, CATHEPSIN B, INHIBITORS, MORBIDITY AND MORTALITY.Abstract
Introduction: breast cancer has increased by 50% in the last two decades. Cathepsin B is a protease involved in the process of tumorigenesis. One of the current problems is the emergence of drug resistance. The search for new therapeutic alternatives can reduce its morbidity and mortality.
Objective: in-silico structural and functional characterization of the conserved region in Cathepsin B as a potential therapeutic target in the treatment of breast cancer.
Methods: using the NCBI ENTREZ tool 2,485 Cathepsin B sequences were obtained. The sequences were subjected to multiple alignments using Clustall Omega 1.2.4. Structural and functional characterization of the protease under study was performed using the InterPro, Prosite, Uniprot and UniprotKB databases. Using the Jalview viewer, the largest conserved area of Cathepsin B species was chosen.
Results: the protease is involved in the regulation of catalytic activity, proteolysis, negative regulation of cell death, collagen catabolic processes and possesses hydrolase activity. The multiple analyses allowed the visualization of the aminoacid characteristics of the active site of Cathepsin B and the selection of the most conserved protein region.
Conclusions: the conserved region of Cathepsin B constitutes a potential target in the development of inhibitors as drugs against breast cancer. In-silico analysis reduces the cost of current research and contributes to pharmacological biosafety.
Downloads
References
1. Waks A, Winer E. Breast cancer treatment a review. Rev Clinical Review and Education [Internet]. 2019 [citado: 11/03/2021]; 321(3): [aprox. 3p.]. Disponible en: http://bdrc.tums.ac.ir/uploads/140/2020/Jun/17/Breast-Cancer-Treatment-Jan-2019-1.pdf
2. Bray F, Piñeros M. Patrones, tendencias y proyecciones del cáncer en América Latina y el Caribe: un contexto global. Salud Pública Mex [Internet]. 2016 [citado 07/03/21]; 58(2): [aprox. 7p.]. Disponible en: https://www.medigraphic.com/pdfs/salpubmex/sal-2016/sal162d.pdf
3. Ramírez Valle M, García Montesino G, Lores Hechevarria C, Sánchez Azcuy Y, Márquez Hernández C. Histología e inmunohistoquímica del cáncer de mama invasivo en la provincia de Pinar del Río. Rev. cienc. méd. Pinar Río [Internet]. 2019 [citado: 07/03/2021]; 23(1): 71-78. Disponible en: http://revcmpinar.sld.cu/index.php/publicaciones/article/view/3801
4. Ministerio de Salud Pública. Anuario estadístico 2018 [Internet]. 2019. La Habana. MINSAP. Disponible en: http://www.onei.gob.cu/sites/default/files/aec_2019_0.pdf
5. Samira Jaeger, Ana Igea, Rodrigo Arroyo, Victor Alcalde, Begoña Canovas, Modesto Orozco, et al. Quantification of pathway crosstalk reveals novel synergistic drug combinations for breast cancer. Rev Cancer Research [Internet]. 2017 [citado: 07/03/2021]; 77(2): 459–469. Disponible en: https://cancerres.aacrjournals.org/content/77/2/459
6. Aggarwal N, Sloane B. Cathepsin B: Multiple roles in cancer. Rev Proteomics Clin. Appl [Internet]. 2014 [citado: 07/03/2021]; 8(5): 427-437. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/prca.201300105
7. Gondi C, Rao J. Cathepsin B as a cancer target. Rev Expert Opin Ther Targets [Internet]. 2013 [citado: 07/03/2021]; 17(3): 281–291. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587140/
8. Naranjo Feliciano D. Análisis in silico de la catepsina B de Fasciola hepática como diana terapéutica. REDVET [Internet]. 2009 [citado: 08/03/2021]; 10(2): 1-36. Disponible en: http://www.redalyc.org/articulo.oa?id=63617114011
9. Nelson D, Cox M. Aminoácidos, péptidos y proteínas. En: Freeman WH, eds. Lehninger Principios de Bioquímica. 5ta ed. Barcelona: Omega; 2009.
10. Li Y, Fang J, Zhen G. Cathepsin B and L inhibitors: a patent review (2010 - present). Expert Opinion on Therapeutic Patents [Internet]. 2017 [citado: 11/03/2021]; 27(6): 643-656. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/13543776.2017.1272572
11. Garg S, Raghav N. Inhibitory potential of some chalcones on cathepsins B, H and L. RCS Adv [Internet]. 2015 [citado: 08/03/2021]; 5: 72937-72949. Disponible en: https://www.readcube.com/articles/10.1039%2Fc5ra12856k
12. Socic I, Mitrovic A, Curic H, Knez D, Brodnik H, Stefane B, et al. Cathepsin B inhibitors: Further exploration of the nitroxoline core. Bioorganic & Medicinal Chemistry Letters [Internet]. 2018 [citado: 09/03/2021]; 28(7): 1239–1247. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0960894X18301471?via%3Dihub
13. Dai Z, Cheng Q, Zhang Y. Rational design of a humanized antibody inhibitor of cathepsin B. Biochemistry [Internet]. 2020 [citado: 09/03/2021]; 59(14): 1420-1427. Disponible en: https://pubs.acs.org/doi/abs/10.1021/acs.biochem.0c00046
14. Toupin N, Arora K, Shrestha P, Peterson J, Fischer L, Rajagurubandara E, et al. BODIPY-caged photoactivated inhibitors of cathepsin B flip the light switch on cancer cell apoptosis. ACS Chem. Biol [Internet]. 2019 [citado: 09/03/2021]; 14(12): 2833-2840. Disponible en: https://pubs.acs.org/doi/abs/10.1021/acschembio.9b00711
15. Rajagopal K, Arumugasamy P, Byran G, Pandiyan B. In-silico Design, ADMET Screening, MM-GBSA Binding Free Energy of Some Novel Isoxazole Sustituted 9-Anilinoacridines as HER2 Inhibitors Targeting Breast Cancer. International Journal of Computational and Theoretical Chemistry [Internet]. 2019 [citado: 04/03/2021]; 7(1): 6-13. Disponible en: http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=228&doi=10.11648/j.ijctc.20190701.12
16. Maruthanila V, Elancheran R, Nand R, Anupam B, AjaiKumar K, Kabilan S et al. In silico Molecular Modelling of Selected Natural Ligands and their Binding Features with Estrogen Receptor Alpha. Current Computer [Internet]. 2019 [citado: 04/03/2021]; 15(1): 89-96. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30306879/
Downloads
Published
How to Cite
Issue
Section
License
Authors who have publications with this journal agree to the following terms: Authors will retain their copyrights and grant the journal the right of first publication of their work, which will be publication of their work, which will be simultaneously subject to the Creative Commons Attribution License (CC-BY-NC 4.0) that allows third parties to share the work as long as its author and first publication in this journal are indicated.
Authors may adopt other non-exclusive license agreements for distribution of the published version of the work (e.g.: deposit it in an institutional telematic archive or publish it in a volume). Likewise, and according to the recommendations of the Medical Sciences Editorial (ECIMED), authors must declare in each article their contribution according to the CRediT taxonomy (contributor roles). This taxonomy includes 14 roles, which can be used to represent the tasks typically performed by contributors in scientific academic production. It should be consulted in monograph) whenever initial publication in this journal is indicated. Authors are allowed and encouraged to disseminate their work through the Internet (e.g., in institutional telematic archives or on their web page) before and during the submission process, which may produce interesting exchanges and increase citations of the published work. (See The effect of open access). https://casrai.org/credit/