Therapeutic potential of Physalis peruviana: a review of its biological activity
Keywords:
HYPOGLYCEMIC AGENTS, PHYSALIS, PHYTOTHERAPY, PLANTS, MEDICINAL.Abstract
Introduction: physalis peruviana, also known as uvilla or uchuva, is a plant native to South America that has been traditionally used for its medicinal properties.
Objective: to describe the biological activity of Physalis peruviana and its therapeutic potential.
Methods: an exhaustive review of the scientific literature available in the electronic databases PubMed, Scopus and Web of Science was carried out. A filter was applied to limit the results to articles published in the last five years, obtaining a total of 28 articles available in the database. English-language articles were selected that focused on the biological activity of Physalis peruviana.
Results: the plant contains bioactive compounds, such as withanolides, flavonoids, phenolic acids and carotenoids, which contribute to its therapeutic properties. Some studies have shown the efficacy of Physalis peruviana in the regulation of serum glucose levels, prevention of tumor formation and protection against oxidative damage, including its potential as an antidiabetic, anti-inflammatory, anticancer, antioxidant, antibacterial, neuroprotective and nephroprotective agent.
Conclusions: physalis peruviana is a promising source of bioactive compounds with diverse therapeutic properties, such as antidiabetic, anticancer, antioxidant, antibacterial, neuroprotective and nephroprotective activity. The findings underscore the importance of continuing research in this area to discover and develop new natural products that can be used in the prevention and treatment of various diseases.
Downloads
References
1. Kasali FM, Tusiimire J, Kadima JN, Tolo CU, Weisheit A, Agaba AG. Ethnotherapeutic Uses and Phytochemical Composition of Physalis peruviana L. An Overview. ScientificWorldJournal [Internet]. 2021 [citado 06/06/2023]; 2021:5212348. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34671227/
2. Muñoz P, Parra F, Simirgiotis MJ, Sepúlveda Chavera GF, Parra C. Chemical Characterization, Nutritional and Bioactive Properties of Physalis peruviana Fruit from High Areas of the Atacama Desert. Foods [Internet]. 2021 [citado 06/06/2023]; 10(11):2699 Disponible en: https://pubmed.ncbi.nlm.nih.gov/34828980/
3. Medina S, Collado-González J, Ferreres F, Londoño-Londoño J, Jiménez-Cartagena C, Guy A, et al. Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. J Sci Food Agric [Internet]. 2019 [citado 06/06/2023]; 99(5): 2194–204. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30315579/
4. Park H, Kwon O, Ryu H, Min J, Park M, Park M, et al. Physalis peruviana L. inhibits ovalbumin induced airway inflammation by attenuating the activation of NF κB and inflammatory molecules. Int J Mol Med [Internet]. 2019 [citado 06/06/2023]; 43(4):1830-1838. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30816433/
5. Ezzat SM, Abdallah HMI, Yassen NN, Radwan RA, Mostafa ES, Salama MM, et al. Phenolics from Physalis peruviana fruits ameliorate streptozotocin-induced diabetes and diabetic nephropathy in rats via induction of autophagy and apoptosis regression. Biomed Pharmacother [Internet]. 2021 [citado 06/06/2023]; 142: 111948. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34385108/
6. Dong B, An L, Yang X, Zhang X, Zhang J, Tuerhong M, et al. Withanolides from Physalis peruviana showing nitric oxide inhibitory effects and affinities with iNOS. Bioorganic Chemistry [Internet]. 2019 [citado 06/06/2023]; 87: 585–93. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0045206818315463
7. Hsieh KY, Tsai JY, Lin YH, Chang FR, Wang HC, Wu CC. Golden berry 4β-hydroxywithanolide E prevents tumor necrosis factor α-induced procoagulant activity with enhanced cytotoxicity against human lung cancer cells. Sci Rep [Internet]. 2021 [citado 06/06/2023]; 11(1): 4610. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33633307/
8. Li QR, Liang HJ, Li BL, Yuan J, Ao ZY, Fan YW, et al. Peruranolides A–D, four new withanolides with potential antibacterial and cytotoxic activity from Physalis peruviana L. Front Biosci (Landmark) [Internet]. 2022 [citado 06/06/2023]; 27(3): 98. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35345330/
9. Yu TJ, Cheng YB, Lin LC, Tsai YH, Yao BY, Tang JY, et al. Physalis peruviana-Derived Physapruin A (PHA) Inhibits Breast Cancer Cell Proliferation and Induces Oxidative-Stress-Mediated Apoptosis and DNA Damage. Antioxidants (Basel) [Internet]. 2021 [citado 06/06/2023]; 10(3):393. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33807834/
10. Navarro-Hoyos M, Arnáez-Serrano E, Quirós-Fallas MI, Vargas-Huertas F, Wilhelm-Romero K, Vásquez-Castro F, et al. QTOF-ESI MS Characterization and Antioxidant Activity of Physalis peruviana L. (Cape Gooseberry) Husks and Fruits from Costa Rica. Molecules [Internet]. 2022 [citado 06/06/2023]; 27(13):4238. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35807484/
11. Bazalar Pereda MS, Nazareno MA, Viturro CI. Nutritional and Antioxidant Properties of Physalis peruviana L. Fruits from the Argentinean Northern Andean Region. Plant Foods Human Nutr [Internet]. 2019 [citado 06/06/2023]; 74(1):68–75. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30471071/
12. Ndegwa FK, Kondam C, Aboagye SY, Esan TE, Waxali ZS, Miller ME, et al. Traditional Kenyan herbal medicine: exploring natural products’ therapeutics against schistosomiasis. J Helminthol [Internet]. 2022 [citado 06/06/2023]; 96: e16. Disponible en: https://www.cambridge.org/core/product/identifier/S0022149X22000074/type/journal_article
13. Valderrama IH, Echeverry SM, Rey DP, Rodríguez IA, Silva FRMB, Costa GM, et al. Extract of Calyces from Physalis peruviana Reduces Insulin Resistance and Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Pharmaceutics [Internet]. 2022 [citado 06/06/2023]; 14(12):2758. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36559252/
14. Ballesteros-Vivas D, Álvarez-Rivera G, Ibáñez E, Parada-Alfonso F, Cifuentes A. A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compounds from goldenberry (Physalis peruviana L.) calyx extracts using hyphenated techniques. J Chromogr A [Internet]. 2019 [citado 06/06/2023]; 1584: 144-154. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30579639/
15. Pino-de la Fuente F, Nocetti D, Sacristán C, Ruiz P, Guerrero J, Jorquera G, et al. Physalis peruviana L. Pulp Prevents Liver Inflammation and Insulin Resistance in Skeletal Muscles of Diet-Induced Obese Mice. Nutrients [Internet]. 2020 [citado 06/06/2023]; 12(3): 700. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146126/
16. Kasali FM, Kadima JN, Tusiimire J, Agaba AG. Hypoglycemic, Antihyperglycemic, and Toxic Effects of Physalis peruviana L. Aqueous and Methanolic Leaf Extracts in Wistar Rats. J Exp Pharmacol [Internet]. 2022 [citado 06/06/2023]; 4: 185–93. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35698475/
17. Vaillant F, Corrales-Agudelo V, Moreno-Castellanos N, Ángel-Martín A, Henao-Rojas JC, Muñoz-Durango K, et al. Plasma Metabolome Profiling by High-Performance Chemical Isotope-Labelling LC-MS after Acute and Medium-Term Intervention with Golden Berry Fruit (Physalis peruviana L.), Confirming Its Impact on Insulin-Associated Signaling Pathways. Nutrients [Internet]. 2021 [citado 06/06/2023]; 13(9): 3125. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34579001/
18. Kumagai M, Yoshida I, Mishima T, Ide M, Fujita K, Doe M, et al. 4β-Hydroxywithanolide E and withanolide E from Physalis peruviana L. inhibit adipocyte differentiation of 3T3-L1 cells through modulation of mitotic clonal expansion. J Nat Med [Internet]. 2021 [citado 06/06/2023]; 75(1): 232–9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33200287/
19. Ye ZN, Yuan F, Liu JQ, Peng XR, An T, Li X, et al. Physalis peruviana-Derived 4β-Hydroxywithanolide E, a Novel Antagonist of Wnt Signaling, Inhibits Colorectal Cancer In Vitro and In Vivo. Molecules [Internet]. 2019 [citado 06/06/2023]; 24(6): 1146. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30909473/
20. Areiza-Mazo N, Robles J, Zamudio-Rodriguez JA, Giraldez L, Echeverria V, Barrera-Bailon B, et al. Extracts of Physalis peruviana Protect Astrocytic Cells Under Oxidative Stress With Rotenone. Front Chem [Internet]. 2018 [citado 06/06/2023]; 6: 276. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30175092/
21. Soliman HSM, Korany EM, El-Sayed EK, Aboelyazed AM, Ibrahim HA. Nephroprotective effect of Physalis peruviana L. calyx extract and its butanolic fraction against cadmium chloride toxicity in rats and molecular docking of isolated compounds. BMC Complement Med Ther [Internet]. 2023 [citado 06/06/2023]; 23(1): 21. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36707799/
22. Cicchetti E, Duroure L, Le Borgne E, Laville R. Upregulation of Skin-Aging Biomarkers in Aged NHDF Cells by a Sucrose Ester Extract from the Agroindustrial Waste of Physalis peruviana Calyces. J Nat Prod [Internet]. 2018 [citado 06/06/2023]; 81(9): 1946–55. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30136843/
23. Patra JK, Das G, Kumar A, Ansari A, Kim H, Shin HS. Photo-mediated Biosynthesis of Silver Nanoparticles Using the Non-edible Accrescent Fruiting Calyx of Physalis peruviana L. Fruits and Investigation of its Radical Scavenging Potential and Cytotoxicity Activities. J Photochem Photobiol B [Internet]. 2018 [citado 06/06/2023]; 188: 116–25. Disponible en: https://europepmc.org/article/med/30266015
24. Bernal CA, Castellanos L, Aragón DM, Martínez-Matamoros D, Jiménez C, Baena Y, et al. Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as α-amylase inhibitors. Carbohydr Res [Internet]. 2018 [citado 06/06/2023]; 461: 4-10. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29549750/
25. Yu TJ, Yen CY, Cheng YB, Yen CH, Jeng JH, Tang JY, et al. Physapruin A Enhances DNA Damage and Inhibits DNA Repair to Suppress Oral Cancer Cell Proliferation. Int J Mol Sci [Internet]. 2022 [citado 06/06/2023]; 23(16): 8839. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36012104/
26. Park EJ, Sang-Ngern M, Chang LC, Pezzuto JM. Physalactone and 4β-Hydroxywithanolide E Isolated from Physalis peruviana Inhibit LPS-Induced Expression of COX-2 and iNOS Accompanied by Abatement of Akt and STAT1. J Nat Prod [Internet]. 2019 [citado 06/06/2023]; 82(3): 492–9. Disponible en: https://pubs.acs.org/doi/10.1021/acs.jnatprod.8b00861
27. Mokhtar SM, Swailam HM, Embaby HES. Physicochemical properties, nutritional value and techno-functional properties of goldenberry ( Physalis peruviana ) waste powder concise title: Composition of goldenberry juice waste. Food Chem [Internet]. 2018 [citado 06/06/2023]; 248: 1–7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29329831/
28. Lezoul NEH, Belkadi M, Habibi F, Guillén F. Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules [Internet]. 2020 [citado 06/06/2023]; 25(20): 4672. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33066273/
Downloads
Published
How to Cite
Issue
Section
License
Authors who have publications with this journal agree to the following terms: Authors will retain their copyrights and grant the journal the right of first publication of their work, which will be publication of their work, which will be simultaneously subject to the Creative Commons Attribution License (CC-BY-NC 4.0) that allows third parties to share the work as long as its author and first publication in this journal are indicated.
Authors may adopt other non-exclusive license agreements for distribution of the published version of the work (e.g.: deposit it in an institutional telematic archive or publish it in a volume). Likewise, and according to the recommendations of the Medical Sciences Editorial (ECIMED), authors must declare in each article their contribution according to the CRediT taxonomy (contributor roles). This taxonomy includes 14 roles, which can be used to represent the tasks typically performed by contributors in scientific academic production. It should be consulted in monograph) whenever initial publication in this journal is indicated. Authors are allowed and encouraged to disseminate their work through the Internet (e.g., in institutional telematic archives or on their web page) before and during the submission process, which may produce interesting exchanges and increase citations of the published work. (See The effect of open access). https://casrai.org/credit/
