Potencial terapéutico de Physalis peruviana: una revisión sobre su actividad biológica

Anahí Belén Bonilla-Rodríguez, Johanna Paola Peñafiel-Barrigas, Mónica Viviana Moscoso-Silva

Texto completo:

PDF XML

Resumen

Introducción: la Physalis peruviana, también conocida como uvilla o uchuva, es una planta originaria de Sudamérica que ha sido utilizada tradicionalmente por sus propiedades medicinales

Objetivo: describir la actividad biológica de la Physalis peruviana y su potencial terapéutico.

Métodos: se realizó una revisión exhaustiva de la literatura científica disponible en las bases de datos electrónicas PubMed, Scopus y Web of Science. Se aplicó un filtro para limitar los resultados a artículos publicados en los últimos cinco años, obteniendo un total de 28 artículos disponibles en la base de datos. Se seleccionaron artículos en idioma inglés que estuvieran enfocados en la actividad biológica de la Physalis peruviana.

Resultados: la planta contiene compuestos bioactivos, como withanólidos, flavonoides, ácidos fenólicos y carotenoides, que contribuyen a sus propiedades terapéuticas. Se destacan algunos estudios que han demostrado la eficacia de la Physalis peruviana en la regulación niveles séricos de glucosa, la prevención de la formación de tumores y la protección contra el daño oxidativo, incluyendo su potencial como antidiabético, antiinflamatorio, anticancerígeno, antioxidante, antibacteriano, neuroprotector y nefroprotector.

Conclusiones: la Physalis peruviana es una fuente prometedora de compuestos bioactivos con diversas propiedades terapéuticas, como la actividad antidiabética, anticancerígena, antioxidante, antibacteriana, neuroprotectora y nefroprotectora. Los hallazgos subrayan la importancia de continuar investigando en esta área para descubrir y desarrollar nuevos productos naturales que puedan utilizarse en la prevención y tratamiento de diversas enfermedades.

Palabras clave

ANTIDIABÉTICO; PHYSALIS; FITOTERAPIA; PLANTAS MEDICINALES.

Referencias

Kasali FM, Tusiimire J, Kadima JN, Tolo CU, Weisheit A, Agaba AG. Ethnotherapeutic Uses and Phytochemical Composition of Physalis peruviana L. An Overview. ScientificWorldJournal [Internet]. 2021 [citado 06/06/2023]; 2021:5212348. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34671227/

Muñoz P, Parra F, Simirgiotis MJ, Sepúlveda Chavera GF, Parra C. Chemical Characterization, Nutritional and Bioactive Properties of Physalis peruviana Fruit from High Areas of the Atacama Desert. Foods [Internet]. 2021 [citado 06/06/2023]; 10(11):2699 Disponible en: https://pubmed.ncbi.nlm.nih.gov/34828980/

Medina S, Collado-González J, Ferreres F, Londoño-Londoño J, Jiménez-Cartagena C, Guy A, et al. Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. J Sci Food Agric [Internet]. 2019 [citado 06/06/2023]; 99(5): 2194–204. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30315579/

Park H, Kwon O, Ryu H, Min J, Park M, Park M, et al. Physalis peruviana L. inhibits ovalbumin induced airway inflammation by attenuating the activation of NF κB and inflammatory molecules. Int J Mol Med [Internet]. 2019 [citado 06/06/2023]; 43(4):1830-1838. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30816433/

Ezzat SM, Abdallah HMI, Yassen NN, Radwan RA, Mostafa ES, Salama MM, et al. Phenolics from Physalis peruviana fruits ameliorate streptozotocin-induced diabetes and diabetic nephropathy in rats via induction of autophagy and apoptosis regression. Biomed Pharmacother [Internet]. 2021 [citado 06/06/2023]; 142: 111948. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34385108/

Dong B, An L, Yang X, Zhang X, Zhang J, Tuerhong M, et al. Withanolides from Physalis peruviana showing nitric oxide inhibitory effects and affinities with iNOS. Bioorganic Chemistry [Internet]. 2019 [citado 06/06/2023]; 87: 585–93. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0045206818315463

Hsieh KY, Tsai JY, Lin YH, Chang FR, Wang HC, Wu CC. Golden berry 4β-hydroxywithanolide E prevents tumor necrosis factor α-induced procoagulant activity with enhanced cytotoxicity against human lung cancer cells. Sci Rep [Internet]. 2021 [citado 06/06/2023]; 11(1): 4610. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33633307/

Li QR, Liang HJ, Li BL, Yuan J, Ao ZY, Fan YW, et al. Peruranolides A–D, four new withanolides with potential antibacterial and cytotoxic activity from Physalis peruviana L. Front Biosci (Landmark) [Internet]. 2022 [citado 06/06/2023]; 27(3): 98. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35345330/

Yu TJ, Cheng YB, Lin LC, Tsai YH, Yao BY, Tang JY, et al. Physalis peruviana-Derived Physapruin A (PHA) Inhibits Breast Cancer Cell Proliferation and Induces Oxidative-Stress-Mediated Apoptosis and DNA Damage. Antioxidants (Basel) [Internet]. 2021 [citado 06/06/2023]; 10(3):393. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33807834/

Navarro-Hoyos M, Arnáez-Serrano E, Quirós-Fallas MI, Vargas-Huertas F, Wilhelm-Romero K, Vásquez-Castro F, et al. QTOF-ESI MS Characterization and Antioxidant Activity of Physalis peruviana L. (Cape Gooseberry) Husks and Fruits from Costa Rica. Molecules [Internet]. 2022 [citado 06/06/2023]; 27(13):4238. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35807484/

Bazalar Pereda MS, Nazareno MA, Viturro CI. Nutritional and Antioxidant Properties of Physalis peruviana L. Fruits from the Argentinean Northern Andean Region. Plant Foods Human Nutr [Internet]. 2019 [citado 06/06/2023]; 74(1):68–75. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30471071/

Ndegwa FK, Kondam C, Aboagye SY, Esan TE, Waxali ZS, Miller ME, et al. Traditional Kenyan herbal medicine: exploring natural products’ therapeutics against schistosomiasis. J Helminthol [Internet]. 2022 [citado 06/06/2023]; 96: e16. Disponible en: https://www.cambridge.org/core/product/identifier/S0022149X22000074/type/journal_article

Valderrama IH, Echeverry SM, Rey DP, Rodríguez IA, Silva FRMB, Costa GM, et al. Extract of Calyces from Physalis peruviana Reduces Insulin Resistance and Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Pharmaceutics [Internet]. 2022 [citado 06/06/2023]; 14(12):2758. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36559252/

Ballesteros-Vivas D, Álvarez-Rivera G, Ibáñez E, Parada-Alfonso F, Cifuentes A. A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: Characterization of bioactive compounds from goldenberry (Physalis peruviana L.) calyx extracts using hyphenated techniques. J Chromogr A [Internet]. 2019 [citado 06/06/2023]; 1584: 144-154. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30579639/

Pino-de la Fuente F, Nocetti D, Sacristán C, Ruiz P, Guerrero J, Jorquera G, et al. Physalis peruviana L. Pulp Prevents Liver Inflammation and Insulin Resistance in Skeletal Muscles of Diet-Induced Obese Mice. Nutrients [Internet]. 2020 [citado 06/06/2023]; 12(3): 700. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146126/

Kasali FM, Kadima JN, Tusiimire J, Agaba AG. Hypoglycemic, Antihyperglycemic, and Toxic Effects of Physalis peruviana L. Aqueous and Methanolic Leaf Extracts in Wistar Rats. J Exp Pharmacol [Internet]. 2022 [citado 06/06/2023]; 4: 185–93. Disponible en: https://pubmed.ncbi.nlm.nih.gov/35698475/

Vaillant F, Corrales-Agudelo V, Moreno-Castellanos N, Ángel-Martín A, Henao-Rojas JC, Muñoz-Durango K, et al. Plasma Metabolome Profiling by High-Performance Chemical Isotope-Labelling LC-MS after Acute and Medium-Term Intervention with Golden Berry Fruit (Physalis peruviana L.), Confirming Its Impact on Insulin-Associated Signaling Pathways. Nutrients [Internet]. 2021 [citado 06/06/2023]; 13(9): 3125. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34579001/

Kumagai M, Yoshida I, Mishima T, Ide M, Fujita K, Doe M, et al. 4β-Hydroxywithanolide E and withanolide E from Physalis peruviana L. inhibit adipocyte differentiation of 3T3-L1 cells through modulation of mitotic clonal expansion. J Nat Med [Internet]. 2021 [citado 06/06/2023]; 75(1): 232–9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33200287/

Ye ZN, Yuan F, Liu JQ, Peng XR, An T, Li X, et al. Physalis peruviana-Derived 4β-Hydroxywithanolide E, a Novel Antagonist of Wnt Signaling, Inhibits Colorectal Cancer In Vitro and In Vivo. Molecules [Internet]. 2019 [citado 06/06/2023]; 24(6): 1146. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30909473/

Areiza-Mazo N, Robles J, Zamudio-Rodriguez JA, Giraldez L, Echeverria V, Barrera-Bailon B, et al. Extracts of Physalis peruviana Protect Astrocytic Cells Under Oxidative Stress With Rotenone. Front Chem [Internet]. 2018 [citado 06/06/2023]; 6: 276. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30175092/

Soliman HSM, Korany EM, El-Sayed EK, Aboelyazed AM, Ibrahim HA. Nephroprotective effect of Physalis peruviana L. calyx extract and its butanolic fraction against cadmium chloride toxicity in rats and molecular docking of isolated compounds. BMC Complement Med Ther [Internet]. 2023 [citado 06/06/2023]; 23(1): 21. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36707799/

Cicchetti E, Duroure L, Le Borgne E, Laville R. Upregulation of Skin-Aging Biomarkers in Aged NHDF Cells by a Sucrose Ester Extract from the Agroindustrial Waste of Physalis peruviana Calyces. J Nat Prod [Internet]. 2018 [citado 06/06/2023]; 81(9): 1946–55. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30136843/

Patra JK, Das G, Kumar A, Ansari A, Kim H, Shin HS. Photo-mediated Biosynthesis of Silver Nanoparticles Using the Non-edible Accrescent Fruiting Calyx of Physalis peruviana L. Fruits and Investigation of its Radical Scavenging Potential and Cytotoxicity Activities. J Photochem Photobiol B [Internet]. 2018 [citado 06/06/2023]; 188: 116–25. Disponible en: https://europepmc.org/article/med/30266015

Bernal CA, Castellanos L, Aragón DM, Martínez-Matamoros D, Jiménez C, Baena Y, et al. Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as α-amylase inhibitors. Carbohydr Res [Internet]. 2018 [citado 06/06/2023]; 461: 4-10. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29549750/

Yu TJ, Yen CY, Cheng YB, Yen CH, Jeng JH, Tang JY, et al. Physapruin A Enhances DNA Damage and Inhibits DNA Repair to Suppress Oral Cancer Cell Proliferation. Int J Mol Sci [Internet]. 2022 [citado 06/06/2023]; 23(16): 8839. Disponible en: https://pubmed.ncbi.nlm.nih.gov/36012104/

Park EJ, Sang-Ngern M, Chang LC, Pezzuto JM. Physalactone and 4β-Hydroxywithanolide E Isolated from Physalis peruviana Inhibit LPS-Induced Expression of COX-2 and iNOS Accompanied by Abatement of Akt and STAT1. J Nat Prod [Internet]. 2019 [citado 06/06/2023]; 82(3): 492–9. Disponible en: https://pubs.acs.org/doi/10.1021/acs.jnatprod.8b00861

Mokhtar SM, Swailam HM, Embaby HES. Physicochemical properties, nutritional value and techno-functional properties of goldenberry ( Physalis peruviana ) waste powder concise title: Composition of goldenberry juice waste. Food Chem [Internet]. 2018 [citado 06/06/2023]; 248: 1–7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29329831/

Lezoul NEH, Belkadi M, Habibi F, Guillén F. Extraction Processes with Several Solvents on Total Bioactive Compounds in Different Organs of Three Medicinal Plants. Molecules [Internet]. 2020 [citado 06/06/2023]; 25(20): 4672. Disponible en: https://pubmed.ncbi.nlm.nih.gov/33066273/



Copyright (c) 2023 Anahí Belén Bonilla-Rodríguez, Johanna Paola Peñafiel-Barrigas, Mónica Viviana Moscoso-Silva

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.