Fisiopatología de la vaso-oclusión en la drepanocitosis / Pathophysiology of the vaso-occlusion in the sickle cell anemia
Resumen
La vaso-oclusión en la drepanocitosis es una característica única entre las anemias hemolíticas. La idea de que el eritrocito falciforme induce el proceso vaso-oclusivo ha sido desechada y no cabe duda que el fenómeno ocurre debido a la adhesión de los hematíes deformables menos densos (reticulocitos de stress) al endotelio vascular activado en las vénulas post-capilares, proceso en el que participan moléculas de adhesión celular (MAC) eritrocitarias y vasculares así como un conjunto de factores plasmáticos; la externalización de la fosfatidilserina, la acción de la trombina, la expresión de factor tisular asociada a alteraciones del mecanismo de transporte catiónico, conjuntamente con la formación de agregados de banda 3 constituyen un conjunto de elementos cruciales en la explicación fisiopatológica de la vaso-oclusión y su relación con diferentes opciones terapéuticas.
Palabras clave: Vaso-oclusión, drepanocitosis, moléculas de adhesión celular, molécula banda 3.
ABSTRACT
The vaso-occlusion in the sickle cell anemia is only characteristic in the haemolytic anemias. The idea that the falciform erythrocyte induces the vaso-occlusive process has been abolished and without doubt the event is produced by the adhesion of the low density deformed erythrocytes ( stress reticulocytes ) to the active vascular endothelium in post-capillary venule participating in the process molecules of cellular adhesion ( erythrocytic and vascular) as well as a group of plasma factors; the external phosphatidilserine , the thrombine action , the expression of tissue factor associated to the disorders of the cationic transportation mechanism as well as the aggregates (band 3) are crucial elements in the pathophysiological explanation of vaso-occlusion and its relation to different therapeutic options.
Key words: Vaso-occlusion,sickle cell anemia, cellular adhesion molecules, band 3 molecule
Referencias
Svarch E, Hernández P, Ballester J M. La drepanocitosis en Cuba. Rev Cubana Hematol Inmunol Hemoter 2004 Vol 20 No 2 p 0-0 0864-0289.
Galdwin M U, Sachdeu V, Jilson M L. Pulmonary hypertension as risk factor of death in patients with sickle cell disease. N Eng J Med 2004; 350:886-95
Machín S, Guerra T, Svarch E. Morbiletalidad en pacientes adultos con drepanocitosis. Rev Cubana Hematol Inmunol Hemoter. Mayo-agosto 2004 Vol 20 No 2 p 0-0 ISSN0864-0289.
Stuart M J. Nagel R. Sickle cell disease. Lancet 2004; 364:1343-60.
Álvarez O, Montané B, López G, Wilkinson J, Millar I. Early blood transfusions Project against microalbuminuria in children with sickle cell disease. Pediatr Blood Cancer 2006; 47:71-6
Ausavarungnirum P, Sablo H, Kim J, Tegeler CH. Dynamic vascular analysis shows a hyperemic flow pattern in sickle cell disease. J Neuroimaging 2006; 16:311-7
Ware R H, Eggleston B, Redding-Lallinger R. Predictor of fetal hemoglobin response in children with sickle cell anemia recieving hydroxyourea therapy. Blood 2002; 99:10-4.
Steinberg M H. Modulation of fetal hemoglobin in sickle cell anemia. Hemoglobin 2001; 25:195-211
Wunt T. The role of inflammation and leukocytes in the pathogenesis of sickle cell disease. Hematology 2001; 5(5):403-12. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/11399640
Villaescusa R, Arce A. Función de los anticuerpos naturales anti banda 3 en el fenómeno de vaso-oclusión de la drepanocitosis. Rev Cubana Hematol Inmunol Hemoter 2005; 20(2):22-7
Rivera A, Jarolim P, Brugara C. Modulation of Gardos channel activity by cytokines in sickle erithrocytes. Blood 2002; 99:357-63.
Gibson J S, Ellory J C. Membrane transport in sickle cell disease. Blood Cells Mol Dis 2001; 28:303-14
Matsui N M, Borsing L, Rosen S D, Yaghmai M, Yarki A, Embury S H. P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood 2002; 98:1955-62.
Lee K, Gane P, Roudot-Thozaval 12. - F. The nonexpression of CD36 on reticulocytes and mature red blood cells does not modify the clinical course of patients with sickle cell anemia. Blood 2001; 98:966-71.
Horning R, Lutz H U. Band 3 protein clustering on human erythrocytes prometes binding of naturally ocuring anti-band 3 and anti-spectrin antibodies. Exp Geront 2000; 35:1025-4415
Hines P C, Zen Q, Burney S N. Novel epineprhine and cycle AMP mediated activation of VCAM-Lu-dependent sickle (SS) red adhesion. Blood 2003; 101:3281-7.
- De Jong K, Larkin S K, Styles L A, Boorchin R M, Kuypers F A. Characterization of the phosphatidylserine-exposing sub-population in sickle cells. Blood 2001; 98:860-7.
Bosman G. Erythrocyte aging in sickle cell disease. Cell Mol Biol 2004; 50:81-6
- Claster S, Vichinsky EP. Managing sickle cell disease. Brit Med J 2003; 327:14-21.
Kaul D K, Hebbel R P. Hipoxial reoxigenation causes inflamatory response in transgenic sickle mice but not in normal mice. J Clin Invest 2000; 106:411-20
Osarogiagbon V R, Choon G S, Belger J D, Vercellioti G, Paller M S, Hebbel R P. Reperfusion injury pathophysiology in sickle transgenic mice. Blood 2000; 96:314-20.
Setty B N Y, Suart M J, Campier C, Brudecki D, Alle J L. Hypoxaemia in sickle cell disease: biomarker maduration and relevance to pathophysiology. Lancet 2003; 362:1450-5.
Franceschi L, Corrdcher R. Established and experimental treatments for sickle cell disease. Haematologica 2004; 89:348-56.
Tomer A, Harker L A, Kasey S, Eckman J R. Thrombogenesis in sickle cell disease. J Lab Clin Med 2001; 137:398-407.
Matsui N M, Vark A, Embury S H. Heparin inhibits the flow adhesion of sickle red blood cells to P-selectin. Blood 2002; 100:3790-6.
Pace B S, White E L, Dover G I, Boosalis M S, Faller D V, Perrine S P. Short-chain fatty acid derivates induce fetal globin expression and erythropoiesis in vivo. Blood 2002; 100; 4640-8.
Copyright (c) 1969 Mirta Caridad Campo Díaz, Adalberto Fortún Prieto, Adalberto Fortún Campo, Jorge Luis Hernández González
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.